
A NearlyQuadratic Improvement for Memory Reallocation
Martin Farach-Colton

∗

New York University

New York, NY, USA

martin.farach-colton@nyu.edu

William Kuszmaul
†

Harvard University

Cambridge, MA, USA

william.kuszmaul@gmail.com

Nathan Sheffield

Massachusetts Institute of Technology

Cambridge, MA, USA

shefna@mit.edu

Alek Westover

Massachusetts Institute of Technology

Cambridge, MA, USA

alekw@mit.edu

ABSTRACT
In the Memory Reallocation Problem a set of items of various

sizes must be dynamically assigned to non-overlapping contiguous

chunks of memory. It is guaranteed that the sum of the sizes of all

items present at any time is at most a (1 − 𝜀)-fraction of the total

size of memory (i.e., the load-factor is at most 1 − 𝜀). The allocator
receives insert and delete requests online, and can re-arrange exist-

ing items to handle the requests, but at a reallocation cost defined
to be the sum of the sizes of items moved divided by the size of the

item being inserted/deleted.

The folklore algorithm for Memory Reallocation achieves a cost

of𝑂 (𝜀−1) per update. In recent work at FOCS’23, Kuszmaul showed

that, in the special case where each item is promised to be smaller

than an 𝜀4-fraction of memory, it is possible to achieve expected

update cost 𝑂 (log 𝜀−1). Kuszmaul conjectures, however, that for

larger items the folklore algorithm is optimal.

In this work we disprove Kuszmaul’s conjecture, giving an allo-

cator that achieves expected update cost 𝑂 (𝜀−1/2 polylog 𝜀−1) on
any input sequence. We also give the first non-trivial lower bound

for the Memory Reallocation Problem: we demonstrate an input

sequence on which any resizable allocator (even offline) must incur

amortized update cost at least Ω(log 𝜀−1).
Finally, we analyze the Memory Reallocation Problem on a sto-

chastic sequence of inserts and deletes, with random sizes in [𝛿, 2𝛿]
for some 𝛿 . We show that, in this simplified setting, it is possible to
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achieve 𝑂 (log 𝜀−1) expected update cost, even in the “large item”

parameter regime (𝛿 > 𝜀4).
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1 INTRODUCTION
In theMemory Reallocation Problem an allocator must assign

a dynamic set of items to non-overlapping contiguous chunks of

memory. Given an set of items with sizes 𝑥1, 𝑥2, . . . , 𝑥𝑛 , and given

a memory represented by the real interval [0, 1], a valid allo-
cation of these items to memory locations is a set of locations

𝑦1, . . . , 𝑦𝑛 ∈ [0, 1] so that the intervals (𝑦𝑖 , 𝑦𝑖 + 𝑥𝑖 ) ⊂ [0, 1] are
all disjoint. As objects are inserted/deleted over time, the job of

the allocator is rearrange items in memory so that, at any given

moment, there is a valid allocation. The allocator is judged by two

metrics: the maximum load factor that it can support; and the

reallocation overhead that it induces. The allocator is said to sup-

port load factor 1− 𝜀 if it can handle an arbitrary sequence of item

insertions/deletions, where the only constraint is that the sum of

the sizes of the items present, at any given moment, is never more

than 1 − 𝜀; and the allocator is said to achieve overhead (or cost) 𝑐
on a given insertion/deletion, if the sum of the sizes of the items

that are rearranged is at most a 𝑐-factor larger than the size of the

item that is inserted/deleted. We remark that all of the allocators in

this work will be resizable, meaning that if 𝐿 ≤ 1 − 𝜀 is the total
size of items present at any time then, then all the items are placed

in the interval [0, 𝐿 + 𝜀].
The Memory Reallocation Problem, and its variations, have been

studied in a variety of different settings, ranging from history in-

dependent data structures [5, 9], to storage allocation in databases

[4], to allocating time intervals to a dynamically changing set of

parallel jobs [2, 3, 6]. The version considered here [3, 5, 9] is notable
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for its choice of cost function: if we model the time needed to alloca-
tion/deallocate/move an object of size 𝑠 as 𝑂 (𝑠), then an overhead

of 𝑂 (𝑐) implies that the total time spent moving objects around

is at most an 𝑂 (𝑐)-factor larger than the time spent simply allo-

cating/deallocating objects. The problem of minimizing movement

overhead is especially important in systems with many parallel

readers, since objects may need to be locked while they are being

moved.

Past Work. Most early work on memory allocation focused on

the setting in which items cannot be moved after being allocated

(i.e., the 0-cost case) [7, 10, 11]. However, it is known that such

allocators necessarily perform very poorly on their space usage –

they cannot, in general, achieve a load factor better than𝑂 (1/log𝑛))
[7, 10, 11]. The main goal in studying memory reallocation [4, 5] is

therefore to determine how much item movement is necessary to

achieve a load factor of 1 − 𝜀.
The folklore algorithm [4, 5] for the Memory Reallocation

Problem is based on the observation that whenever an item of size

𝑘 must be inserted we can, by the pigeon-hole principle, find an

interval of size 𝑂 (𝑘𝜀−1) which has 𝑘 free space. Thus it is possible

to handle inserts at cost 𝑂 (𝜀−1) and handle deletes for free.

In recent work at FOCS’23 [5], Kuszmaul shows how to handle

the case where all items have size smaller than 𝜀4 with expected

update cost 𝑂 (log 𝜀−1). However, Kuszmaul conjectures that, in

general, the𝑂 (𝜀−1) folklore bound should be optimal. He proposes,

in particular, that the special case in which objects have sizes in the

range (𝜀, 2𝜀) should require Ω(𝜀−1) overhead per insertion/deletion.

This Paper: Beating the Folklore Bound. In this work we disprove

Kuszmaul’s conjecture. In fact, we prove a stronger result: that it is

possible to beat the folklore𝑂 (𝜀−1) bound without any constraints

on object sizes.

We begin by considering the specialized setting in which items

have sizes in the range (𝜀, 2𝜀)—this, in particular, was the setting

that Kuszmaul conjectured to be hard. We give in Section 3 a rel-

atively simple allocator that achieves 𝑂 (𝜀−2/3) amortized update

cost in the case where all items have sizes in (𝜀, 2𝜀). Although this

allocator does not solve the full problem that we care about, it

does introduce an important algorithmic idea that will be useful

throughout the paper: the idea of having a special small set of items

stored as a suffix of memory which are each “responsible” for a

large number of items in the main portion of memory. Whenever an

item from the main portion of memory is deleted, it gets “replaced”

with an item that was responsible for it from the small suffix of

memory. By using this notion of responsibility in the right way,

we can imbue enough combinatorial structure into our allocation

algorithm that it is able to beat the folklore 𝑂 (𝜀−1) bound.
The construction of Section 3 is a good start, but does not imme-

diately generalize to handle arbitrary item sizes. In Section 4 we give

several new ideas to handle the case of items with sizes in [𝜀5, 1].
Then, we show how to combine this allocator with Kuszmaul’s

allocator from [5] to achieve:

Corollary 4.10. There is a resizable allocator for arbitrary items
with expected update cost �̃� (𝜀−1/2) = 𝑂 (𝜀−1/2 polylog 𝜀−1).

At a high level, the algorithm in Corollary 4.10 takes the basic

idea from Section 3 (a small suffix of items that take responsibility

for items in the main array), and applies it in a nested structure.

This nested “responsibility” structure is not simply a recursive

application of the technique—rather, it is carefully constructed so

that items of a given size can only appear some levels of the nest.

This ends up being what enables us to beat the folklore bound with

an arbitrary combination of item sizes.

We conclude the paper with two additional results that are of

independent interest. The first is a lower bound, showing that𝑂 (1)
update cost is not, in general, possible. And the second is an upper

bound for a special case where the input sequence is generated by

a simple stochastic process.

Until now, the only non-trivial lower bounds for the Memory

Reallocation Problem have been for very restricted sets of allocation

algorithms [5]. In Section 5, we give a lower bound that applies to

any (even offline) allocator. In fact, the update sequence which we

use to establish the lower bound is remarkably simple, involving

just two item sizes.

Theorem 5.1. There exist sizes 𝑠1, 𝑠2 ∈ Θ(𝜀1/2) and an update
sequence 𝑆 consisting solely of items of sizes 𝑠1, 𝑠2 such that any
resizable allocator (even one that knows 𝑆) must have amortized
update cost at least Ω(log 𝜀−1) on 𝑆 .

Finally, in Section 6, we consider a setting where item arrivals

and departures follow a simple stochastic assumption. Define a

𝜹-random-item sequence as one where memory is first filled with

items of sizes chosen randomly from [𝛿, 2𝛿], and then the allocator

receives alternating deletes of random items and inserts of items

with sizes chosen randomly from [𝛿, 2𝛿]. In this setting we are able

to achieve 𝑂 (log 𝜀−1) overhead:

Theorem 6.1. For any 𝛿 = poly(𝜀), there is a resizable alloca-
tor that handles 𝛿-random-item sequences with worst-case expected
update cost 𝑂 (log 𝜀−1).

We note that the algorithm for Theorem 6.1 uses very different

techniques from the other algorithms proposed in the paper. In

fact, because of this, the algorithm in Theorem 6.1 ends up being

quite nontrivial to implement time-efficiently. We give an imple-

mentation that decides which items to move in worst-case expected

time 𝑂 (𝜀−1/2) per update. The time bound is due to a technically

interesting lemma about subset sums of random sets.

2 PRELIMINARIES AND CONVENTIONS
We use [𝑛] to denote the set {1, 2, . . . , 𝑛}. For set 𝑋 and value 𝑦 we

define 𝑦 +𝑋 = {𝑦 + 𝑥 | 𝑥 ∈ 𝑋 } and 𝑦 ·𝑋 = {𝑦𝑥 | 𝑥 ∈ 𝑋 }. We use

log to denote log
2
. We use |𝐼 | to denote the size of an item 𝐼 . The

total size of a set of items is defined to be the sum of their sizes.

We will refer to memory as going from left to right, i.e., the start of

memory is on the left and the end of memory is on the right.

In theMemory Reallocation Problem with free-space param-

eter 𝜀, an allocator maintains a set of items in memory, which is

represented by the interval [0, 1]. Memory starts empty, and items

are inserted and deleted over time by an oblivious adversary, where

the only constraint on the update sequence is that the items present

at any time must have total size at most 1−𝜀. The job of an allocator

is to maintain a dynamic allocation of items to memory, that is, to

assign each item to a disjoint interval whose size equals the item’s
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size. If the allocator moves 𝐿 total size of items on an update of size

𝑘 we say the update is handled at cost 𝐿/𝑘 .
We construct allocators that give an extra guarantee: If 𝐿 ∈

[0, 1−𝜀] is the total size of items present at any time, then a resizable
allocator guarantees that all the items are placed in the interval

[0, 𝐿 + 𝜀] ⊆ [0, 1].
Our analysis is asymptotic as a function of 𝜀−1. Thus, we may

freely assume that 𝜀−1 is at least a sufficiently large constant. We

use the notation 𝑂 to hide polylog(𝜀−1) factors, and the notation

poly(𝑛) to denote 𝑛Θ(1) .

3 AN ALLOCATOR FOR LARGE ITEMS
In this section we describe a simple allocator for a special case of the

Memory Reallocation Problem, disproving a conjecture of Kuszmaul

[5]. We remark that the folklore bound only gives performance

𝑂 (𝜀−1) in the regime of Theorem 3.1, i.e., gives no non-trivial bound.

Theorem 3.1. There is a resizable allocator for items of with sizes
in [𝜀, 2𝜀) that achieves amortized update cost 𝑂 (𝜀−2/3).

Theorem 3.1 offers an amortized bound, although, as we shall see
in Section 4, it is also possible to obtain a non-amortized expected

bound. We remark that there are two notions of amortized cost

that one could reasonably consider – if 𝐿𝑖 denotes the total-size of

items moved to handle the 𝑖-th update and 𝑘𝑖 is the size of the 𝑖-th

update, then either of
1

𝑛

∑𝑛
𝑖=1 𝐿𝑖/𝑘𝑖 or

∑𝑛
𝑖=1 𝐿𝑖/

∑𝑛
𝑖=1 𝑘𝑖 would be a

reasonable objective function. Fortunately, in this section, because

the𝑘𝑖 ’s are all equal up to a factor of two, the two objective functions

are the same up to constant factors. In later sections where object

sizes differ by larger factors, we will go with the convention that

guarantees should be worst-case expected rather than amortized.

Proof. We call our allocator SIMPLE. We partition the sizes

[𝜀, 2𝜀) into ⌈𝜀−1/3⌉ size classes, where the 𝑖-th size class consists

of items with size in the range

[𝜀 + (𝑖 − 1)𝜀4/3, 𝜀 + 𝑖𝜀4/3).
Now we describe the operation of SIMPLE; we also provide pseu-

docode for SIMPLE in Algorithm 1.

Rebuilds. Every ⌊𝜀−1/3⌋ updates (starting from the first update)

SIMPLE performs a rebuild. Let 𝑥𝑖 be the number of items of size

class 𝑖 at the time of this rebuild. In a rebuild operation SIMPLE takes
the min(𝑥𝑖 , ⌊𝜀−1/3⌋) smallest items from size class 𝑖 for each 𝑖 ∈
[⌈𝜀−1/3⌉] and groups them into a covering set. SIMPLE arranges

memory so that the items are contiguous, left-aligned (i.e., starting

at 0), and so that the covering set is a suffix of the present items.

Handling inserts. When an item is inserted SIMPLE adds the

item to the covering set and places it directly after the final element

currently in memory.

Handling deletes. Suppose an item 𝐼 of size class 𝑖 is deleted.
If 𝐼 is not part of the covering set SIMPLE finds an item 𝐼 ′ in the

covering set which is also of size class 𝑖 but with |𝐼 ′ | ≤ |𝐼 |. SIMPLE
places 𝐼 ′ at the location where 𝐼 used to start and logically inflates
item 𝐼 ′ to be of size |𝐼 |. That is, SIMPLE will consider item 𝐼 ′ to be

of size |𝐼 | until 𝐼 ′ is inflated even further or until the next rebuild.

Algorithm 1 SIMPLE Allocator

1: SIMPLE maintains a suffix of the items called the covering set.
2: if it has been ⌊𝜀−1/3⌋ updates since the last rebuild (or it is the

first update) then
3: Perform a rebuild as follows:

4: Logically restore items to their original size (i.e., revert any

logical inflation of sizes).

5: For each 𝑖 ∈ [⌈𝜀−1/3⌉] let 𝑥𝑖 be the number of items of the

𝑖-th size class.

6: Let 𝑆 be the union over 𝑖 ∈ [⌈𝜀−1/3⌉] of the smallest

min(𝑥𝑖 , ⌊𝜀−1/3⌋) items in the 𝑖-th size class.

7: Arrange items to be contiguous and left-aligned, with items

𝑆 occurring after the other items.

8: Update the covering set to be 𝑆 .

9: if an item 𝐼 is inserted then
10: Place 𝐼 immediately after the final item of the covering set

and add 𝐼 to the covering set.

11: else if an item 𝐼 is deleted then
12: if 𝐼 is not part of the covering set then
13: Let 𝐼 ′ be an item from the covering set of the same size

class as 𝐼 with |𝐼 ′ | ≤ |𝐼 |.
14: Place 𝐼 ′ where 𝐼 used to start.

15: Logically inflate the size of 𝐼 ′ to |𝐼 |.
16: Remove 𝐼 from memory.

17: Compact the covering set, arranging its items to be con-

tiguous and flush with the non-covering set.

On each rebuild all items are reverted to their actual size. We say

this swap operation introduces waste |𝐼 | − |𝐼 ′ | ≤ 𝜀4/3 into memory.

Finally, regardless of whether 𝐼 was in the covering set, SIMPLE
ends the delete by removing 𝐼 from memory and compacting the

covering set, i.e., arranging the covering set items to be contiguous,

and left-aligned against the end of the non-covering-set.

Lemma 3.2. SIMPLE is correct and well-defined.

Proof. To verify correctness we must show that SIMPLE places

items within the allowed space. SIMPLE essentially stores the items

contiguously, except for the waste introduced on deletes. Each

delete creates waste at most 𝜀4/3: the maximum possible size differ-

ence between two items of the same size class. SIMPLE performs

a rebuild every ⌊𝜀−1/3⌋ updates. Thus, the total waste in memory

will never exceed

⌊𝜀−1/3⌋ · 𝜀4/3 ≤ 𝜀.

Thus, if the total size of items present is 𝐿, SIMPLE stores all items

in the memory region [0, 𝐿 + 𝜀].
To verify that SIMPLE is well-defined we must argue that on

every delete of an item outside of the covering set SIMPLE can find

a suitable item in the covering set to swap with the deleted item;

all other parts of SIMPLE’s instructions clearly succeed. Fix a size

class 𝑖 . We consider two (exhaustive) cases for how many items of

size class 𝑖 were placed in the covering set on the previous rebuild,

and argue that in either case whenever an item 𝐼 of size-class 𝑖

outside the covering set is deleted SIMPLE can find an appropriate

item 𝐼 ′ in the covering set to swap with 𝐼 .

3



SPAA ’24, June, 17-21, 2024, Nantes, France Martin Farach-Colton, William Kuszmaul, Nathan Sheffield, and Alek Westover

Figure 1: A depiction of SIMPLE handling a delete of an item
𝐼 outside of the covering set by replacing 𝐼 with an item 𝐼 ′

from the covering set, inflating 𝐼 ′ to size |𝐼 |, and compacting
the covering set.

Case 1: The ⌊𝜀−1/3⌋ smallest items of size class 𝑖 were placed

in the covering set on the previous rebuild; call this set of items

𝑆𝑖 . Then, because SIMPLE performs rebuilds every ⌊𝜀−1/3⌋ updates
and because SIMPLE swaps at most one of the items from 𝑆𝑖 out of

the covering set on each delete we have that on any delete before

the next rebuild there is always an element of 𝑆𝑖 contained in the

covering set. The items in 𝑆𝑖 were chosen to be the smallest items

of size class 𝑖 at the time of the previous rebuild. Recall that inserted

items are added to the covering set. Thus, we maintain the invariant

that all items 𝐼 of size class 𝑖 outside of the covering set have (logical)

size at least the size of any element in 𝑆𝑖 . Thus, there is always an

appropriate covering set item to swap with any deleted item of size

class 𝑖 outside of the covering set.

Case 2: If we are not in Case 1, then during the previous re-

build there were fewer than ⌊𝜀−1/3⌋ total items of size class 𝑖 , and

SIMPLE placed all of these items in the covering set. This property,

that all items of size class 𝑖 are contained in the covering set, is

maintained until the next rebuild because inserted items are added

to the covering set. Thus, until the next rebuild there is never a
delete of an item of size class 𝑖 outside of the covering set: no such

items exist. So the condition we desire to hold on such deletes is

vacuously true.

□

Lemma 3.3. SIMPLE has amortized update cost 𝑂 (𝜀−2/3).

Proof. The covering set has size at most 2𝜀 · ⌈𝜀−1/3⌉ ·2⌊𝜀−1/3⌋ ≤
𝑂 (𝜀1/3). This is because all items have size at most 2𝜀, the number

of size classes is ⌈𝜀−1/3⌉, and the number of items of each size class

in the covering set starts as at most ⌊𝜀−1/3⌋ and then increases

by at most one per update during the ⌊𝜀−1/3⌋ updates between

rebuilds, and hence the number of items of each size class in the

covering set never exceeds 2⌊𝜀−1/3⌋. We compact the covering set

on each update and so incur cost𝑂 (𝜀1/3/𝜀) ≤ 𝑂 (𝜀−2/3) per update.
Rebuilds incur cost at most 1/𝜀, and occur every ⌊𝜀−1/3⌋ steps. Thus,
their amortized cost is at most 𝜀−1/⌊𝜀−1/3⌋ ≤ 𝑂 (𝜀−2/3). Overall,
SIMPLE’s amortized update cost is 𝑂 (𝜀−2/3). □

□

4 AN ALLOCATOR FOR ARBITRARY ITEMS
Theorem 3.1 gives a surprising and simple demonstration that the

folklore bound is not tight in the large items regime. In this section

we will show how to outperform the folklore algorithm for arbitrary

items, which is substantially more difficult than Theorem 3.1. In [5]

Kuszmaul has already shown how to outperform the folklore algo-

rithm in the regime where items are very small. In Section 4.2 we

show that Kuszmaul’s allocator can be combined with any resizable

allocator fairly easily, to even get a resizable allocator. Thus, the

main difficulty we address in this section is extending Theorem 3.1’s

allocator SIMPLE to work on items with sizes in the interval [𝜀5, 1].
There are two major obstacles not present in SIMPLE that arise

when handling items with sizes that can differ by factor of poly(𝜀).
The first challenge is that SIMPLE compacts the entire covering

set on every delete. The covering set needs to be large enough to

contain a substantial quantity of items of each size class. Large

items, e.g., of size close to 𝜀1/2 can potentially afford to compact the

covering set each time they are the subject of an update. However,

it would be catastrophic if updates of smaller items, e.g., items of

size 𝜀3 caused the entire covering set to be compacted each time. In

fact, the situation is even more troublesome: we hope to improve

SIMPLE’s update cost of𝑂 (𝜀−2/3) to𝑂 (𝜀−1/2). Thus, even items of

size Θ(𝜀) cannot afford to compact the entire covering set on each

update if the covering set is large. And, in order to make rebuilds

infrequent it seems like we must make the covering set quite large.

The second challenge is that SIMPLE breaks items into size

classes, which are groups of items whose sizes differ by at most

𝜀4/3. The small multiplicative range of item sizes that we assume in

Theorem 3.1 ensures that the number of size classes will be small.

However, we cannot use the same style of size classes once the

item sizes can vary by a factor of 𝜀5: there would be far too many

size classes. In order to support a larger range of item sizes, we

modify our size classes to be geometric. That is, we define size

classes of the form [𝛿 (1 + 𝛼)𝑖−1, 𝛿 (1 + 𝛼)𝑖 ] instead of [𝛿 + 𝛼 (𝑖 −
1), 𝛿 + 𝛼𝑖] for some 𝛼 = poly(𝜀). However, geometric size classes

cause a major complication absent in the fixed-stride size class

approach of SIMPLE. Namely, with geometric size classes large

items waste more space than small items per delete. Thus, a naive

approach of rebuilding whenever the wasted space exceeds 𝜀 would

be susceptible to the following vulnerability: a few deletes of large

items could waste a lot of space, but then the rebuild could be

triggered by a small item. But the rebuild is very expensive when

triggered by a small item.

We now introduce a construction to address these issues.

4
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4.1 Handling Items with Sizes in [𝜀5, 1]
Theorem 4.1. There is a randomized resizable allocator for items

of size at least 𝜀5 that achieves worst-case expected update cost𝑂 (𝜀−1/2) .

Proof. We call our allocator GEO. GEO labels an item as huge
if it has size at least 𝜀1/2/100. Whenever a huge item 𝐼 is inserted

or deleted GEO rearranges all of memory so that all huge items

are compacted together at the start of memory. The cost of each

such operation is 𝑂 (𝜀−1/2). Thus, we may assume without loss of

generality that there are no huge items. Assume that 𝜀−1 is a power
of 4. This is without loss of generality up to decreasing 𝜀 by at most

a factor of 4.

Let 𝛽 = 1 + 𝜀1/2. GEO classifies the non-huge items into 𝐶 ≤
𝑂 (𝜀−1/2 log 𝜀−1) size classes. Specifically, an item is classified as

part of the 𝑖-th size class if it has size in the interval [𝜀5𝛽𝑖−1, 𝜀5𝛽𝑖 ) .
GEO builds a sequence of ℓ = 4.5 log 𝜀−1 covering levels 1

– nested

suffixes of memory with geometrically decreasing sizes. In particu-

lar, if an item 𝐼 is in level 𝑗 , we also consider 𝐼 to be in each level

𝑗 ′ < 𝑗 . For each 𝑗 ∈ [ℓ] the mass limit for each size class in level

𝑗 is defined to be

𝑚 𝑗 = 2
ℓ− 𝑗+1𝜀5 .

We will ensure the level size invariant: for all 𝑗 ∈ [ℓ], 𝑖 ∈ [𝐶]
the total size of items of size class 𝑖 in level 𝑗 is at most 2𝑚 𝑗 . In

particular, this will mean that the total size of level 𝑗 is at most

2𝐶𝑚 𝑗 . Note that𝑚ℓ = 2𝜀5: the deepest level can fit only 𝑂 (1) of
even the smallest items. Also note that

𝑚1 = 2
ℓ𝜀5 = 2

4.5 log 𝜀−1𝜀5 = 𝜀1/2,

so level 1 can fit at least Ω(1) of even the largest items. For con-

venience we will also define the 0-th level to mean all of memory

with𝑚0 = 1.

For each 𝑖 ∈ [𝐶], let 𝑠𝑖 denote the total number of items of size

class 𝑖; this number will change as items are inserted and deleted.

Let 𝑏𝑖 = 𝜀5𝛽𝑖 : all items of size class 𝑖 have size smaller than 𝑏𝑖 . For

each 𝑖 ∈ [𝐶], 𝑗 ∈ [ℓ] the number of items of size class 𝑖 in level 𝑗

will always be at most twice the quantity

𝑐𝑖, 𝑗 = ⌊𝑚 𝑗/𝑏𝑖 ⌋ .
For convenience we also define 𝑐𝑖,0 = ∞ for each 𝑖 ∈ [𝐶].

We now describe GEO.

Level rebuilds. For each 𝑖 ∈ [𝐶], define 𝑗∗
𝑖
to be the largest level

𝑗 ∈ [ℓ] such that 𝑐𝑖, 𝑗 ≥ 1; 𝑗∗
𝑖
is the deepest level that could feasibly

contain an item of size class 𝑖 . In fact we will have 𝑐𝑖, 𝑗∗
𝑖
= 1, because

the mass limit for any levels 𝑗, 𝑗 + 1 differ by a factor of 2, and

because the mass limit in level ℓ is such that level ℓ fits at most 1 of

any size class. For each 𝑖 ∈ [𝐶], 𝑗 ∈ [ 𝑗∗
𝑖
] GEO keeps insert/delete

level rebuild thresholds 𝑟𝑖, 𝑗 , 𝑟 ′𝑖, 𝑗 ∈ [⌈𝑐𝑖, 𝑗/4⌉, ⌈𝑐𝑖, 𝑗/3⌉] ∩ N. GEO
initializes the level rebuild thresholds uniformly randomly from

this range.

Updates will sometimes cause level rebuilds. To simplify the

description of our allocator it is also useful to have a concept of a

free rebuild (a type of rebuild). A free rebuild is a “sentinel value”:

it is only a logical operation and has zero cost. At the very start

GEO performs a free rebuild of each level 𝑗 by each size class 𝑖 . We

describe a level rebuild caused by an insert; level rebuilds caused

1
Note that ℓ ∈ N by our assumption that 𝜀−1 is a power of 4.

by deletes are completely symmetric. Suppose an item of size class

𝑖0 is inserted. For each 𝑗 ∈ [ℓ], let 𝑡 𝑗 denote the number of inserts

since the previous time that level 𝑗 has been rebuilt (including free

rebuilds) by a size class 𝑖0 item. Let 𝑗0 be the smallest 𝑗 ∈ [ 𝑗∗
𝑖0
] such

that 𝑡 𝑗 ≥ 𝑟𝑖0, 𝑗 (in fact, we will have 𝑡 𝑗0 = 𝑟𝑖0, 𝑗0 ).

GEO then rebuilds level 𝑗0. For each 𝑗 ∈ [ℓ], 𝑖 ∈ [𝐶] define I (𝑖 )
𝑗

to be the min(𝑠𝑖 , 𝑐𝑖, 𝑗 ) smallest items of size class 𝑖 , and define

I𝑗 =
⋃

𝑖∈[𝐶 ]
I (𝑖 )
𝑗

.

Define I𝑗 to be all items except for items I𝑗 . To rebuild, GEO rear-

ranges level 𝑗0 − 1 to ensure that for all 𝑗 ≥ 𝑗0 the items I𝑗 appear
to the right of items I𝑗 . This arrangement is well-defined since for

each 𝑗 we have I𝑗+1 ⊆ I𝑗 . We justify in Lemma 4.2 why GEO can

always find any such I𝑗 as a subset of level 𝑗0 − 1, and so achieve

this arrangement by rearranging only level 𝑗0 − 1. GEO labels the

items I𝑗 as level 𝑗 for all 𝑗 ≥ 𝑗0.

Let 𝐽 be the set of all levels 𝑗 ∈ [ 𝑗∗
𝑖
] such that 𝑡 𝑗 ≥ 𝑟𝑖0, 𝑗 . To

finish the rebuild of level 𝑗0 GEO resamples 𝑟𝑖0, 𝑗 randomly from

[⌈𝑐𝑖, 𝑗/4⌉, ⌈𝑐𝑖, 𝑗/3⌉] ∩ N for each 𝑗 ∈ 𝐽 . GEO considers this a free

rebuild for levels 𝑗 ∈ 𝐽 \ { 𝑗0} by the size class 𝑖0 item.

Algorithm 2 Rebuild on an insert of item 𝐼

1: Let 𝑖0 denote the size class of item 𝐼 .

2: For each 𝑗 ∈ [ℓ], let 𝑡 𝑗 denote the number of inserts since

the previous time that level 𝑗 has been rebuilt (including free

rebuilds) by a size class 𝑖0 item.

3: Let 𝑗0 be the smallest 𝑗 ∈ [ 𝑗∗
𝑖0
] such that 𝑡 𝑗 ≥ 𝑟𝑖0, 𝑗 .

4: For each 𝑗 ∈ [ℓ], 𝑖 ∈ [𝐶] define I (𝑖 )
𝑗

to be the min(𝑠𝑖 , 𝑐𝑖, 𝑗 )
smallest items of size class 𝑖 .

5: For 𝑗 ∈ [ℓ] define I𝑗 =
⋃

𝑖∈[𝐶 ] 𝐼
(𝑖 )
𝑗

for all 𝑗 ∈ [ℓ].
6: Assert: items I𝑗 are present in level 𝑗 − 1
7: for 𝑗 ← 𝑗0, 𝑗0 + 1, . . . , ℓ do
8: Arrange level 𝑗 − 1 so that items I𝑗 are on the right, and

other items are on the left.

9: Label items I𝑗 as level 𝑗 .
10: Let 𝐽 be the set of all levels 𝑗 ∈ [ 𝑗∗

𝑖
] such that 𝑡 𝑗 ≥ 𝑟𝑖0, 𝑗 .

11: Resample 𝑟𝑖0, 𝑗 randomly from [⌈𝑐𝑖, 𝑗/4⌉, ⌈𝑐𝑖, 𝑗/3⌉] ∩ N for each

𝑗 ∈ 𝐽 .

12: GEO considers this a free rebuild for levels 𝑗 ∈ 𝐽 \ { 𝑗0} by the

size class 𝑖0 item.

Handling Inserts. GEO handles inserts as follows: Place inserted

items directly after the current final item in memory. When an

item of size class 𝑖 is inserted we add it to level ℓ . As discussed

earlier, inserts trigger level rebuilds when level rebuild thresholds

are reached.

Algorithm 3 Inserts

1: Place 𝐼 immediately after the final item of level ℓ .

2: Perform necessary level rebuilds.

5
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Handling deletes. Suppose an item 𝐼 of size class 𝑖 is deleted. If

item 𝐼 is not in level 𝑗∗
𝑖
GEO finds the item 𝐼 ′ of size class 𝑖 in level

𝑗∗
𝑖
which will have |𝐼 ′ | ≤ |𝐼 | and swaps 𝐼 , 𝐼 ′; in Lemma 4.2 we argue

that there is some such item 𝐼 ′. To swap items 𝐼 and 𝐼 ′ GEO places

item 𝐼 ′ where item 𝐼 used to be. Next, GEO inflates the size of item
𝐼 ′ to |𝐼 |. That is, GEO will logically consider item 𝐼 ′ to have size |𝐼 |
until the next waste recovery step at some later time (or until 𝐼 ′ is
further inflated). We describe the waste recovery procedure after

finishing the description of how GEO handles deletes.

After swapping item 𝐼 (if necessary) and removing 𝐼 from mem-

ory GEO compacts level 𝑗∗
𝑖
, i.e., arranges the items of level 𝑗∗

𝑖
to

be contiguous and left-aligned with the final element that is not

part of level 𝑗∗
𝑖
(or left-aligned with 0 if all elements are part of

the level). As discussed earlier a delete triggers level rebuilds when

level rebuild thresholds are reached.

Algorithm 4 Delete item 𝐼

Input: waste so far and waste recovery threshold 𝑇 .

1: Remove item 𝐼 from memory.

2: Let 𝑖 be the size class of item 𝐼 .

3: Let 𝑗∗
𝑖
be the largest 𝑗 such that 𝑐𝑖, 𝑗 ≥ 1, i.e., so that 𝐼 fits in

level 𝑗 .

4: Assert: the smallest item of size class 𝑖 is guaranteed to be in

level 𝑗∗
𝑖
.

5: if item 𝐼 is not in level 𝑗∗
𝑖
then

6: Find the size class 𝑖 item 𝐼 ′ in level 𝑗∗
𝑖
.

7: Place item 𝐼 ′ where item 𝐼 used to be.

8: Logically inflate the size of 𝐼 ′ to be |𝐼 |.
9: Let 𝑏𝑖 be the maximum size of an item of size class 𝑖 .

10: waste← waste + 𝜀1/2𝑏𝑖 .
11: Compact level 𝑗∗

𝑖
.

12: Perform necessary level rebuilds.

13: if waste > 𝑇 then
14: Perform a waste recovery step.

Implementing waste recovery. When handling deletes GEO per-

forms swaps which cause waste. Suppose GEO swaps items 𝐼 , 𝐼 ′

both of size class 𝑖 , and let 𝑏𝑖 be the maximum size of an item in

size class 𝑖 . Define 𝑤𝑖 = 𝜀1/2𝑏𝑖 . Then, |𝐼 | − |𝐼 ′ | ≤ 𝑏𝑖 − 𝑏𝑖/𝛽 ≤ 𝑤𝑖 .

We say that the swap causes waste𝑤𝑖 . GEO’s waste recovery steps

will ensure that the total waste in memory never exceeds 𝜀. This

will ensure that the total size of gaps introduced by swaps never

exceeds 𝜀.

We consider GEO to have performed a free waste recovery step

at the beginning (this is a logical operation incurring zero cost,

useful as a sentinel value). At every waste recovery step (and at the

beginning) GEO samples threshold 𝑇 ← (𝜀/2, 𝜀) uniformly to de-

termine how much waste to allow before triggering the next waste

recovery step. More precisely, (excluding the free waste recovery

step at the beginning) if the waste recovery threshold was 𝑇 and

the most recent delete would cause the waste introduced since the

previous waste recovery step to be𝑊 ≥ 𝑇 then GEO performs

a waste recovery step. We consider the waste at the start of this

waste recovery step to be𝑊 −𝑇 : that is, waste from the final delete

which caused the waste recovery step overflows to count towards

Figure 2: GEO handling a delete.

the next waste recovery step. To perform the waste recovery step

GEO logically reverts all items to their original sizes, arranges the

items to be contiguous and left-aligned with 0, and then rebuilds

level 1.

Algorithm 5 Waste Recovery Step

1: Revert all logical changes to item sizes.

2: Compact all items to be contiguous and left-aligned.

3: Rebuild level 1.

4: Let𝑊 be the waste since the previous waste recovery step.

5: waste←𝑊 −𝑇 .
6: Resample waste recovery threshold 𝑇 ← (𝜀/2, 𝜀).

GEO is depicted in Figure 2. Now we analyze GEO.

Lemma 4.2. GEO is well-defined and correct (i.e., allocates items
within the allowed space).

Proof. First we show that the level size invariant is maintained.

This follows from the following stronger property: for all 𝑖 ∈
[𝐶], 𝑗 ∈ [ℓ] there are at most 2𝑐𝑖, 𝑗 items of size class 𝑖 in level

𝑗 . First note that this is sufficient to prove the level size invariant

because 2𝑐𝑖, 𝑗 items of size class 𝑖 take up at most 2𝑚 𝑗 space. Nowwe

argue that the rebuild procedure maintains this stronger property.

For all 𝑖 ∈ [𝐶], 𝑗 > 𝑗∗
𝑖
, whenever an item of size class 𝑖 is inserted

some level 𝑗 ∈ [ 𝑗∗
𝑖
] is rebuilt, and so no items of size class 𝑖 can

remain in level 𝑗 because 𝑐𝑖, 𝑗 = 0. For 𝑖 ∈ [𝐶], 𝑗 ∈ [ 𝑗∗
𝑖
], the insert

level rebuild threshold 𝑟𝑖, 𝑗 satisfies 𝑟𝑖, 𝑗 ≤ 𝑐𝑖, 𝑗 . That is, level 𝑗 will be

rebuilt before there are more than 𝑐𝑖, 𝑗 inserts of size class 𝑖 items,

and thus level 𝑗 can never have more than 2𝑐𝑖, 𝑗 size class 𝑖 items.

To show that GEO is correct, we need to verify that after every

update for every 𝑗0 ∈ [ℓ], 𝑗 ≥ 𝑗0, items I𝑗 are contained in level 𝑗0−
1. This is necessary for GEO’s rebuild operation to be well-defined.

Because for each 𝑗 we have I𝑗+1 ⊆ I𝑗 it suffices to show that for

6
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each 𝑗 ∈ [ℓ] the items I𝑗 are contained in level 𝑗 − 1. Recalling the

definition of I𝑗 our goal is to show that for all 𝑖 ∈ [𝐶], 𝑗 ∈ [ℓ] the
min(𝑠𝑖 , 𝑐𝑖, 𝑗 ) smallest items of size class 𝑖 are contained in level 𝑗 − 1.
Fix some size class 𝑖 . First, observe that for 𝑗 > 𝑗∗

𝑖
we have 𝑐𝑖, 𝑗 = 0,

so the claim is vacuously true. We prove the claim for 𝑗 ∈ [ 𝑗∗
𝑖
] by

induction on 𝑗 . The claim is clearly true for 𝑗 = 1: level 0 is all of

memory, so in particular contains the 𝑠𝑖 smallest items of size class

𝑖 . Assume the claim for 𝑗 ∈ [ 𝑗∗
𝑖
− 1], we prove the claim for 𝑗 + 1.

Because the claim is true for 𝑗 we have that whenever level 𝑗 has

just been rebuilt it will contain the min(𝑠𝑖 , 𝑐𝑖, 𝑗 ) smallest elements

of size class 𝑖 , because these items were present in level 𝑗 − 1. We

consider two cases.

Case 1: 𝑐𝑖, 𝑗 ≤ 3. Then 𝑟 ′
𝑖, 𝑗

= 1, i.e., level 𝑗 will be rebuilt every

time a size class 𝑖 item is updated. By our inductive hypothesis re-

building level 𝑗 results in themin(𝑠𝑖 , 𝑐𝑖, 𝑗 ) ≥ min(𝑠𝑖 , 𝑐𝑖, 𝑗+1) smallest

size class 𝑖 items being in level 𝑗 , so the claim holds here.

Case 2: 𝑐𝑖, 𝑗 > 3. Then

𝑐𝑖, 𝑗 − ⌈𝑐𝑖, 𝑗/3⌉ ≥ ⌈𝑐𝑖, 𝑗/2⌉ ≥ 𝑐𝑖, 𝑗+1 .

Thus, if the smallest 𝑐𝑖, 𝑗 items of size class 𝑖 were placed in level 𝑗

on the previous level 𝑗 rebuild the smallest 𝑐𝑖, 𝑗+1 items of size class

𝑖 will still be in level 𝑗 at all times until the next rebuild. On the

other hand, if the smallest 𝑠𝑖 items of size class 𝑖 were placed in

level 𝑗 on the previous level 𝑗 rebuild then no items of size class 𝑖

can exit level 𝑗 until the next level 𝑗 rebuild: there are no size class 𝑖

items outside of level 𝑗 to trigger a swap. Inserts are added to level

𝑗 so they do not break the invariant. This proves the claim for 𝑗 + 1,
so by induction the claim is true for all 𝑗 .

In order for deletions to be well-defined, we must also show that

after every update for every size class 𝑖 with 𝑠𝑖 > 0, the smallest

element of size class 𝑖 is in level 𝑗∗
𝑖
. This holds because we always

have 𝑟 ′
𝑖, 𝑗∗

𝑖

= 1, so every time level 𝑗∗
𝑖
loses the smallest item of size

class 𝑖 it will be rebuilt, and when it is rebuilt it must have the

smallest item because level 𝑗∗
𝑖
− 1 always contains items I𝑗∗

𝑖
. All

inserted items are inserted to level 𝑗∗
𝑖
, so again insertions cannot

break the invariant.

Now, we argue thatGEO always places items within the memory

bounds. If we consider items at their inflated (i.e., logical) sizes

then the items are contiguous. Recall that the total size of gaps

introduced into the array by inflation is bounded by the waste

recovery threshold 𝑇 < 𝜀. Hence, if there is 𝐿 total size of items

present at some time GEO allocates all items in the memory region

[0, 𝐿 + 𝜀]. That is, GEO is resizable.

For completeness we check the fact claimed when defining the

size classes, that 𝐶 ≤ 𝑂 (𝜀−1/2). Indeed,

𝐶 ≤ 𝑂 (log𝛽 𝜀−4.5) ≤ 𝑂

(
log 𝜀−1

log(1 + 𝜀1/2)

)
≤ 𝑂 (𝜀−1/2 log 𝜀−1).

□

Before analyzing GEO’s expected update cost we need two sim-

ple lemmas. The proofs are deferred to Appendix A.

Lemma 4.3. Fix 𝑎, 𝑏,𝑊 ∈ R with 0 ≤ 𝑎 < 𝑏, and𝑊 > 0. Let
𝑥1, 𝑥2, . . . be uniformly and independently sampled from (𝑊 /2,𝑊 ).
The probability that there exists 𝑗 with

∑
𝑖≤ 𝑗 𝑥𝑖 ∈ [𝑎, 𝑏] is at most

4(𝑏 − 𝑎)/𝑊 .

Lemma 4.4. Fix integers 𝑦, 𝑁 ∈ N. Let 𝑥1, 𝑥2, . . . be uniformly and
independently sampled from [⌈𝑁 /4⌉, ⌈𝑁 /3⌉] ∩ N. The probability
that there exists 𝑗 with

∑
𝑖≤ 𝑗 𝑥𝑖 = 𝑦 is at most 100/𝑁 .

Now we analyze the worst-case expected cost of an update. For

the remainder of the proof we fix an arbitrary update index 𝑢 ∈ N;
our goal is to show that the expected cost on update 𝑢 is small. We

break the cost of this update into Γ𝑊 + Γ𝑆 + Γ𝑅 , where Γ𝑊 is the

cost of waste recovery, Γ𝑆 is the cost of swapping elements and

compacting to handle deletes, and Γ𝑅 is the cost of rebuilding levels.

We will show E[Γ𝑊 + Γ𝑆 + Γ𝑅] ≤ 𝑂 (𝜀−1/2).

Lemma 4.5. The expected cost due to waste recovery on update 𝑢
satisfies E[Γ𝑊 ] ≤ 𝑂 (𝜀−1/2) .

Proof. If update𝑢 is an insert thenGEO never performs a waste

recovery step on update 𝑢. Thus, for the purpose of analyzing

the cost of waste recovery it suffices to consider the case that

update 𝑢 is a delete. Let update 𝑢 be the 𝑢′-th delete, and let the

corresponding deleted item be of size class 𝑖 . Let 𝑥1, 𝑥2, . . . , be

the sequence of sizes of items that will be deleted. For each 𝑘 ,

let 𝑤𝑘 be the space wasted by delete 𝑘 , i.e., the maximum size

difference between items in the size class of the 𝑘-th deleted item;

we have𝑤𝑘 ≤ 𝑂 (𝜀1/2𝑥𝑘 ). GEO repeatedly samples waste recovery

thresholds 𝑇1,𝑇2, . . . independently from (𝜀/2, 𝜀). A waste recovery

step occurs on update 𝑢 if there exists 𝑀 ∈ N such that update 𝑢

causes the total waste to cross the𝑀-th waste recovery threshold,

i.e., so that

𝑀∑︁
𝑡=1

𝑇𝑡 ∈
[
𝑢′−1∑︁
𝑘=1

𝑤𝑘 ,

𝑢′∑︁
𝑘=1

𝑤𝑘

]
.

Here we have used the fact that waste overflows between waste

recovery steps. By Lemma 4.3 the probability that such an𝑀 exists

is at most 4𝑤𝑢′/𝜀. If 𝑢 must perform waste recovery the cost is at

most 1/𝑥𝑢′ . Thus, the expected cost of waste recovery on delete 𝑢′

is at most

4𝑤𝑢′

𝜀

1

𝑥𝑢′
≤ 𝑂 (𝜀−1/2) .

□

Lemma 4.6. The cost due to swapping and compacting on update
𝑢 satisfies Γ𝑆 ≤ 𝑂 (𝜀−1/2).

Proof. When an item 𝐼 of size class 𝑖 is deleted GEO potentially

moves an item 𝐼 ′ also of size class 𝑖 to replace item 𝐼 . This costs

𝑂 (1). After removing item 𝐼 from memory GEO must compact

level 𝑗∗
𝑖
. The cost of this compaction is bounded by the maximum

possible size of level 𝑗∗
𝑖
divided by |𝐼 |. The size of level 𝑗∗

𝑖
is at most

2𝐶𝑚 𝑗∗
𝑖
by the level size invariant. We claim |𝐼 | ≥ 𝑚𝑖, 𝑗∗

𝑖
/4. If 𝑗∗

𝑖
< ℓ

but |𝐼 | ≤ 𝑚𝑖, 𝑗∗
𝑖
/4 then 𝐼 ’s size class can fit on a deeper level than 𝑗∗

𝑖
,

contradicting the definition of 𝑗∗
𝑖
. If 𝑗∗

𝑖
= ℓ then the inequality is

true because𝑚𝑖,ℓ/4 is smaller than the minimum item size. Thus,

the cost of compacting level 𝑗∗
𝑖
is at most

2𝐶𝑚 𝑗∗
𝑖

|𝐼 | ≤ 𝑂 (𝐶) ≤ 𝑂 (𝜀−1/2).

Note that there is zero cost here on an insert. □

Lemma 4.7. The expected cost due to rebuilding levels on update 𝑢
satisfies E[Γ𝑅] ≤ 𝑂 (𝜀−1/2).

7
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Proof. There are only ℓ = Θ(log 𝜀−1) levels. Thus, it suffices to

fix a level 𝑗 ∈ [ℓ] and show that the expected cost due to rebuilding

level 𝑗 on update 𝑢 is at most 𝑂 (𝐶) ≤ 𝑂 (𝜀−1/2). Fix 𝑗 ∈ [ℓ] and
let update 𝑢 be an item 𝐼 of size class 𝑖 ∈ [𝐶]. First, note that if
𝑗 > 𝑗∗

𝑖
level 𝑗 is never rebuilt by an item of size class 𝑖 . So, we may

assume 𝑗 ∈ [ 𝑗∗
𝑖
]. We claim the probability that update 𝑢 triggers

a rebuild of level 𝑗 is at most 100/𝑐𝑖, 𝑗 . Suppose that update 𝑢 is an

insert; the case of deletes is symmetric. Let 𝑢 be the 𝑢′-th insert

of a size class 𝑖 item. Let the sequence of insert rebuild thresholds

𝑟𝑖, 𝑗 for level 𝑗 on items of size class 𝑖 chosen by GEO be 𝑥1, 𝑥2, . . ..

Recall that these are sampled from [⌈𝑐𝑖, 𝑗/4⌉, ⌈𝑐𝑖, 𝑗/3⌉] ∩ N. Then,
the probability of update𝑢 triggering a rebuild of level 𝑗 is precisely

the chance that there is some 𝑘∗ such that

∑
𝑘≤𝑘∗ 𝑥𝑘 = 𝑢′. This is

exactly the situation described in Lemma 4.4. Thus, the probability

that 𝑢 triggers a rebuild of level 𝑗 is at most 100/𝑐𝑖, 𝑗 in this case.

If update𝑢 triggers a rebuild of level 𝑗 the cost is at most 2𝐶𝑚 𝑗/|𝐼 |
(and may even be 0 in the case that it was a free rebuild, i.e., covered

by a larger level’s rebuild). Thus, the expected cost of rebuilding

level 𝑗 on update 𝑢 is at most

200𝐶𝑚 𝑗

𝑐𝑖, 𝑗 |𝐼 |
. (1)

Recall the definition of 𝑐𝑖, 𝑗 : if 𝑏𝑖 denotes the maximum possible size

in size class 𝑖 then 𝑐𝑖, 𝑗 = ⌊𝑚 𝑗/𝑏𝑖 ⌋. Thus, because 𝑐𝑖, 𝑗 ≥ 1 we have

𝑐𝑖, 𝑗 · |𝐼 | ≥ 𝑐𝑖, 𝑗𝑏𝑖/𝛽 = ⌊𝑚 𝑗/𝑏𝑖 ⌋𝑏𝑖/𝛽 ≥ 𝑚 𝑗/(2𝛽) ≥ 𝑚 𝑗/4.

This shows that (1) is bounded by 𝑂 (𝐶). □

Thus, the expected cost of update 𝑢 is at most

E[Γ𝑆 + Γ𝑊 + Γ𝑅] ≤ 𝑂 (𝜀−1/2) .

□

4.2 Combining GEO with Kuszmaul’s Allocator
Throughout the subsection we say that an item is large if it has
size larger than 𝜀4, and tiny otherwise. In Theorem 4.1 we de-

scribed the GEO allocator which can handle large items. In [5]

Kuszmaul constructed an allocator based on min-hashing, which

we call TINYHASH, that can handle tiny items with worst-case

expected update cost 𝑂 (log 𝜀−1). Kuszmaul’s TINYHASH is even

a resizable allocator, like GEO. Combining GEO and TINYHASH
immediately yields:

Corollary 4.8. There is an allocator for arbitrary items with
worst-case expected update cost 𝑂 (𝜀−1/2) .

Proof. Instantiate GEO with 𝜀/3 free space starting at the be-
ginning of memory and instantiate TINYHASH with 𝜀/3 free space,
but starting at the end of memory and growing backwards. When

we get an update of a tiny item we send the update to TINYHASH,
and when we get an update of a large item we send the update to

GEO. The correctness of this approach follows from the fact that

TINYHASH and GEO are resizable. In particular, if at some time

there is 𝐿1 total size of tiny items present and 𝐿2 total size of large

items present then GEO only places items in the memory region

[0, 𝐿1 + 𝜀/3], and TINYHASH only places items in the memory re-

gion [1 − 𝐿2 − 𝜀/3, 1]. Because 𝐿1 + 𝐿2 ≤ 1 − 𝜀 these intervals are
disjoint.

This allocator inherits themax of the worst-case expected update

costs in GEO, TINYHASH as its expected update cost. □

In fact, by exploiting the modular structure of TINYHASH, rather
than simply using TINYHASH as a black box we can strengthen

Corollary 4.10 to obtain the same (asymptotically) update cost,

but with a resizable allocator. Now, the layout of memory will be

space [0, 𝐿1 + 𝜀/2] allocated to GEO, where 𝐿1 is the total size

of large items and then space [𝐿1 + 𝜀/2, 𝐿1 + 𝐿2 + 𝜀] allocated to

TINYHASHwhere 𝐿2 is the total size of tiny items present. As before,

GEO handles large items and TINYHASH handles tiny items. The

difference now is that TINYHASH doesn’t have a fixed start location:

as the region of memory managed by GEO changes size we have to

ensure that the region of memory managed by TINYHASH starts

right after GEO’s memory region ends. That is, in addition to the

usual internal updates, we have to modify TINYHASH to support

external updates, which are requests of the form “rearrange all of

memory to start at a location 𝑘 ahead or 𝑘 behind its current start

point”. Such an external update is considered an operation of “size”

𝑘 , and a resizable allocator capable of handling external updates is

called relocatable. The cost of an external update is the total size

𝐿 of items moved to handle the external update divided by the size

𝑘 of the external update. We now show:

Lemma 4.9. If all internal updates are tiny and all external updates
are large, there is a relocatable allocator achieving worst-case expected
internal update cost 𝑂 (log 𝜀−1), and worst-case expected external
update cost 𝑂 (1).

Proof. TINYHASH operates by breaking memory into slabs,
which are contiguous chunks of memory. Let𝑀 denote the largest

possible size of a slab. TINYHASH satisfies𝑀 ≤ 𝑂 (𝜀3). Slabs have
specific sizes and allowed locations. In particular, slabs are of size

𝑀/2𝑖 for some 𝑖 ∈ Z≥0. The start locations of slabs must obey the

following alignment property: a slab of size 𝐿 must be placed at

a location 𝑖 · 𝐿 for some integer 𝑖 ∈ Z≥0. In particular, the smaller

slabs nest perfectly within the larger slabs. We refer to intervals of

the form [𝑀 · 𝑖, 𝑀 · (𝑖 + 1)] for 𝑖 ∈ Z≥0 as memory units. Because
TINYHASH never places items spanning across memory units, re-

arranging memory units doesn’t break TINYHASH’s correctness.
We exploit this modular structure of TINYHASH to make a re-

locatable version of TINYHASH which we call FLEXHASH. FLEX-
HASH uses 𝜀/2 free space to create a buffer . FLEXHASH partitions

the external update sizes (𝜀4, 1] geometrically into 𝐶 ≤ 𝑂 (log 𝜀−1)
update-types, with the 𝑖-th update-type consisting of updates with

size in the interval (2𝑖−1𝜀4, 2𝑖𝜀4]. FLEXHASH will use the buffer to

“hide” the external updates from TINYHASH, which it will run as a

subroutine. FLEXHASH reserves the remaining 𝜀/2 free space for
the normal execution of TINYHASH.

FLEXHASH splits the buffer into 𝐶 parts, one for each update-

type. We use the term central memory to refer to the region of

memory in which TINYHASH will operate. For each 𝑖 ∈ [𝐶] define
variable 𝐵𝑖 . 𝐵𝑖 stores how much of update-type 𝑖’s portion of the

buffer has been used. FLEXHASH will maintain as an invariant that

𝐵𝑖 ∈ [0, 16𝑀] for all 𝑖 ∈ [𝐶] at all times. Furthermore, FLEXHASH
will guarantee that the distance between the start of central memory

and the actual start of all of memory is at most

∑
𝑖∈[𝐶 ] 𝐵𝑖 . Let 𝑠

denote the number of memory units that exist at some time. Let the
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𝑖-th memory unit denote the memory unit that TINYHASH places at

location 𝑖𝑀 . LetΔ denote the starting location of thememory region

assigned to FLEXHASH. Then, there is some permutation 𝜋 : [𝑠] →
[𝑠] such that FLEXHASH places the 𝑖-th memory unit starting at

location Δ +∑
𝑗∈[𝐶 ] 𝐵 𝑗 + 𝜋𝑖 ·𝑀 . The contents of memory unit 𝑖 are

identical between reality and the simulation of TINYHASH.
Any action that TINYHASH takes which happens purely within

memory units can easily be simulated by FLEXHASH. To complete

our description of FLEXHASH we must describe how FLEXHASH
handles when TINYHASH creates and deletes memory units, and

how FLEXHASH handles external updates.

Handling Resize operations. TINYHASH occasionally must per-

form resize operationswhich delete or create memory units. When

TINYHASH creates a new memory unit FLEXHASH also creates a

new memory unit, and places it directly after the physically final

memory unit currently in its memory.

When a resize operation destroys a memory unit for TINYHASH,
it is destroying the final memory unit for TINYHASH, and so does

not create a hole in TINYHASH’s memory. However, TINYHASH’s
final memory unit may not correspond to the the physically final

memory unit of FLEXHASH. So, destroying this memory unit might

cause FLEXHASH to have a large hole in its memory. FLEXHASH
fills this hole by swapping its physically final memory unit into the

location of the deleted memory unit.

Note that swapping memory units is a quite expensive opera-

tion. Fortunately it is at most a constant-factor more expensive

than Kuszmaul’s resize operations already were. Thus, the memory

unit swaps only increase TINYHASH’s expected update cost by a

constant-factor.

Handling External Updates. Whenever an external update occurs

it “pushes” memory to the right or left by its size. When an external

update of update-type 𝑖 and size 𝑥 occurs we update 𝐵𝑖 in the

appropriate direction based on if the update pushed memory to the

right or left.

First we describe how to handle external updates of items with

size at least 𝑀/100. When an external update of this size occurs,

if it does not break the invariant 𝐵𝑖 ∈ [0, 16𝑀] we do nothing. If

it does break the invariant FLEXHASH must restore the invariant.

FLEXHASH is allowed to increase or decrease 𝐵𝑖 by rotating a

memory unit in the appropriate direction, i.e., taking the physically

final memory unit and placing it right before the physically first

memory unit. Whenever the invariant is violated FLEXHASH ro-

tates memory units until 𝐵𝑖 is restored to being within 𝑀 of 8𝑀 .

The cost of doing this on such an external update is 𝑂 (1).
FLEXHASH handles the smaller external updates by perform-

ing buffer rebuilds whenever there is a sufficient number of ex-

ternal updates of some update-type. Let 𝐶′ be the largest 𝑖 such
that update-type 𝑖 consists of updates of size at most 𝑀/100. In
the beginning FLEXHASH chooses random rebuild thresholds
𝑅𝑖 , 𝑅

′
𝑖
← (2𝑀, 4𝑀) for each update-type 𝑖 ∈ [𝐶′]. FLEXHASH also

initializes counters 𝑃𝑖 , 𝑃
′
𝑖
to 0; these store the total amount that

memory has been “pushed” in either direction by external updates

of update-type 𝑖 . When an external update of update-type 𝑖 and size

𝑥 pushes memory to the right or left FLEXHASH increases 𝑃𝑖 or

𝑃 ′
𝑖
(respectively) by 𝑥 . If this causes 𝑃𝑖 > 𝑅𝑖 or 𝑃

′
𝑖
> 𝑅′

𝑖
FLEXHASH

then performs a buffer-𝒊 rebuild. Suppose the buffer-𝑖 rebuild was

Figure 3: Because TINYHASH decomposes into interchange-
able memory-units, we can make TINYHASH relocatable by
rotating memory-units to handle external updates.

triggered by an external update of size 𝑥 that pushed memory to the

right; the other case (left push) is symmetric. To perform the buffer-𝑖

rebuild FLEXHASH rotates memory blocks (as described in the anal-

ysis of handling large external updates) to make 𝐵𝑖 ∈ [7𝑀, 9𝑀].
Then, we set 𝑃𝑖 ← 𝑃𝑖 − 𝑅𝑖 (i.e., we overflow the unused update

size to count towards the next rebuild). Then, we randomly select

𝑅𝑖 ← (2𝑀, 4𝑀). Because we always set 𝑅𝑖 , 𝑅′𝑖 < 4𝑀 and we restore

𝐵𝑖 ∈ [7𝑀, 9𝑀] on each buffer-𝑖 rebuild we clearly maintain the

invariant 𝐵𝑖 ∈ [0, 16𝑀]. It remains to analyze the expected cost

per update. Fix some update 𝑢 of update-type 𝑖 ∈ [𝐶′] and size

𝑥 . Applying Lemma 4.3 we find that the probability of update 𝑢

causing a buffer-𝑖 rebuild is at most 𝑂 (𝑥/𝑀) . Hence, the expected
external update cost is at most

𝑂 (𝑀)
𝑥

𝑂 (𝑥/𝑀) ≤ 𝑂 (1) .

□

Using the relocatable allocator FLEXHASH from Lemma 4.9 it is

easy to show:

Corollary 4.10. There is a resizeable allocator for arbitrary
items with worst-case expected update cost 𝑂 (𝜀−1/2).

Proof. We instantiate GEO with 𝜀/2 free space starting from

0. We also instantiate the relocatable FLEXHASH from Lemma 4.9

with 𝜀/2 free space, and we maintain the property that FLEXHASH
starts after GEO’s memory region ends. If there are 𝐿1 total size

of large items present and 𝐿2 total size of tiny items present then

GEO’s memory region is [0, 𝐿1 + 𝜀/2] and FLEXHASH’s memory

region is [𝐿1+𝜀/2, 𝐿1+𝐿2+𝜀]. We handle tiny itemswith FLEXHASH
and large items with GEO.

Whenever the portion of memory managed by GEO changes

size by 𝑘 (due to an update of size 𝑘), we issue an external update

of size 𝑘 to FLEXHASH in the appropriate direction. The cost of an

external update is defined precisely so that if FLEXHASH handles

this external update at cost 𝑥 then the total size of items moved by

FLEXHASH is 𝑂 (𝑘𝑥). Thus, the actual cost of this update is 𝑂 (𝑥)
as well. Hence, on any update the expected cost due to handling

external updates is𝑂 (1). The expected cost due to updates handled
by GEO is at most 𝑂 (𝜀−1/2), and the expected cost of internal

updates for FLEXHASH is𝑂 (log 𝜀−1). Thus, our allocator’s expected
cost is 𝑂 (𝜀−1/2). □

5 A LOWER BOUND
In this section we give the first non-trivial lower bound for the

reallocation problem using a surprisingly simple update sequence.

9



SPAA ’24, June, 17-21, 2024, Nantes, France Martin Farach-Colton, William Kuszmaul, Nathan Sheffield, and Alek Westover

Theorem 5.1. There exist sizes 𝑠1, 𝑠2 ∈ Θ(𝜀1/2) and an update
sequence 𝑆 consisting solely of items of sizes 𝑠1, 𝑠2 such that any
resizable allocator (even one that knows 𝑆) must have amortized
update cost at least Ω(log 𝜀−1) on 𝑆 .

Proof. Without loss of generality assume 𝜀−1/2 ∈ 4N, and let

𝑛 = (𝜀−1/2)/4. We call the items of size 𝑠1 𝑨’s and the items of size

𝑠2 𝑩’s. Set 𝑠1 = 𝜀1/2 + 2𝜀 and 𝑠2 = 𝜀1/2. The sequence 𝑆 is as follows:

First, insert 𝑛 𝐴’s. Then, for 𝑛 iterations, delete an 𝐴 and insert a 𝐵.

Consider an allocator operating on 𝑆 . We will think of the alloca-

tor’s experience as follows. Every step the allocator must rearrange

memory such that it ends with an 𝐴. Then, that 𝐴 is turned into a

𝐵. This is without loss of generality because a resizable allocator

cannot afford to leave a gap of size 𝑠1 in memory after an 𝐴 is

deleted. Let the “𝑖-th item” denote the 𝑖-th item counting from the

end of memory. For 𝑖 ∈ [𝑛] let 𝐵𝑖 denote the number of 𝐵’s among

the final 𝑖 items of memory. Define potential function (which we

only measure when there are 𝑛 items in memory, i.e., at the start of

each step):

Φ =

𝑛∑︁
𝑖=1

𝐵𝑖

𝑖
.

Whenever an 𝐴 at the end of memory is turned into a 𝐵, each 𝐵𝑖
increases by 1, so Φ increases by

∑𝑛
𝑖=1 1/𝑖 ≥ Ω(log𝑛).

Now we analyze how much the allocator can change Φ by per-

forming 𝑥 work. We claim that the allocator’s rearrangement can

be decomposed into “full permutations”, operations of the form:

pick 𝑖, 𝑗 ∈ [𝑛] and for each 𝑘 ∈ [𝑖, 𝑗] ∩ N assign item 𝑘 a new loca-

tion. Clearly the cost of such an operation is Ω( 𝑗 − 𝑖). Intuitively
this decomposition is possible because 𝑠1, 𝑠2 were constructed to

have no additive structure: for any 𝜆1, 𝜆2 ∈ [0, 𝑛] ∩ Z not both 0

we have |𝜆1𝑠1 − 𝜆2𝑠2 | ≥ 2𝜀. Now we show how to decompose the

allocator’s rearrangement into full permutations. Fix 𝑖, 𝑗 ∈ [𝑛] such
that the allocator moves item 𝑘 for each 𝑘 ∈ [𝑖, 𝑗], but does not
move item 𝑘′ for 𝑘′ ∈ {𝑖 − 1, 𝑗 + 1} ∩ [𝑛]. Let 𝑥1 be the location
where item 𝑗 + 1 ends (set 𝑥1 = 0 if 𝑗 = 𝑛) and let 𝑥2 be the location

where item 𝑖 − 1 starts (set 𝑥2 = 1 if 𝑖 = 1). Suppose that there are

𝑎 𝐴’s and 𝑏 𝐵’s in the memory region [𝑥1, 𝑥2] to start, and 𝑎′ 𝐴’s
and 𝑏′ 𝐵’s in this memory region after the the rearrangement. Note

that there are no items only partially in [𝑥1, 𝑥2] before or after the
re-arrangement due to the assumption that the items immediately

on either side of the interval (or the endpoints of memory if no such

items exist) do not move. As argued above, if (𝑎, 𝑏) ≠ (𝑎′, 𝑏′) then
| (𝑎 − 𝑎′)𝑠1 + (𝑏 − 𝑏′)𝑠2 | ≥ 2𝜀. A resizable allocator is not allowed

to have more than an 𝜀 gap anywhere in memory, so this would

be an invalid rearrangement. Hence we must have (𝑎, 𝑏) = (𝑎′, 𝑏′).
And then the allocator can simply rearrange the items within items

[𝑖, 𝑗] rather than taking items from outside of [𝑖, 𝑗]. Thus, we can
decompose any set of rearrangements into full permutations.

Now, consider the potential change caused by a full permutation

that moves 𝑥 items. This operation only changes the 𝐵𝑖 values for 𝑥

items. Thus, because 𝐵𝑖/𝑖 ≤ 1 for all 𝑖 , the operation decreases Φ by

at most 𝑥 . This operation requires at least 𝑥/2 work. In summary,

the allocator requires at least 𝑥/2 work to decrease Φ by 𝑥 .

We have shown a sequence of 3𝑛 updates such that, over the

course of the whole update sequence,Φmust increase by Ω(𝑛 log𝑛).
Since the potential starts at 0 and is always at most 𝑛, the allocator

must have amortized cost at least

1

2

Ω(𝑛 log𝑛) − 𝑛
3𝑛

≥ Ω(log𝑛) ≥ Ω(log 𝜀−1).
□

6 AN ALLOCATOR FOR ITEMS WITH
RANDOM SIZES IN [𝛿, 2𝛿]

In this section we consider allocators for random items, i.e., items

with uniformly random sizes in some range [𝛿, 2𝛿]. In this setting

we are able to create an allocator with substantially better perfor-

mance than the allocators of Section 4.

Fix 𝛿 = poly(𝜀). A 𝛿-random-item sequence is the following
sequence of updates: The first ⌊𝛿−1/4⌋ updates are inserts of items

with sizes chosen randomly from [𝛿, 2𝛿]. Then, the sequence alter-
nates between a deletion of a random item and an insertion of an

item with size chosen randomly from [𝛿, 2𝛿]. Note that there will
always be (within 1 of) ⌊𝛿−1/4⌋ items present. Our main result of

this section is:

Theorem 6.1. There is a randomized resizable allocator that han-
dles 𝛿-random-item sequences with worst-case expected update cost
𝑂 (log 𝜀−1). Furthermore, the set of items that our allocator moves to
handle an update can be computed in expected time 𝑂 (𝜀−1/2).

Note that in this stochastic setting where the total size of items

present is variable the resizable guarantee of our allocator is the

most natural property to hope for. To prove Theorem 6.1, the fol-

lowing property of 𝛿-random-item sequences is quite useful: After

𝑑 ≥ ⌊𝛿−1/4⌋ updates the distribution of items sizes present is the

same distribution as obtained by sampling ⌊𝛿−1/4⌋ (or ⌊𝛿−1/4⌋ + 1
depending on the parity of 𝑑) values independently from [𝛿, 2𝛿].

Our allocator for random items is based on the observation that

random independent values can make many subset sums. The sub-

set sums of random sets have been studied before (see, e.g., [8]).

However, to the best of our knowledge previous work has only

given an asymptotic version of the result we need, namely The-

orem 6.2. Our self-contained analysis explicitly determines the

constant-factor for how large a random set has to be in order to

contain a subset of a desired sum with constant probability. This is

important for our application because the constant-factor appears

as an exponent in the running time of our algorithm.

In what follows our analysis is asymptotic in a parameter 𝑛 ∈ N
(rather than in 𝜀−1 like in all other places in the paper). First we

need a standard fact about sums of random variables. We show in

Appendix A how to derive this fact from a theorem in [12].

Fact 1. Fix constants 𝑎, 𝑏 > 0. Let 𝑥1, . . . , 𝑥𝑛 ← [0, 1] be chosen
uniformly randomly and independently. Then

Pr

[
𝑛∑︁
𝑖=1

𝑥𝑖 ∈ [𝑛/2 − 𝑎, 𝑛/2 + 𝑏]
]
= Θ(1/

√
𝑛) .

We will also need the following asymptotic expression for bino-

mial coefficients (see, e.g., [13]):

Fact 2. Define the binary entropy function 𝐻 as
𝐻 (𝑥) = −𝑥 log𝑥 − (1 − 𝑥) log(1 − 𝑥). For any constant 𝛼 ∈ (0, 1),(

𝑛

⌈𝛼𝑛⌉

)
= Θ

(
2
𝑛𝐻 (𝛼 )/

√
𝑛

)
.

10
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We establish the following theorem:

Theorem 6.2. Let𝑚 = 2⌈(log𝑛)/2⌉. Fix arbitrary 𝑦 ∈ (3/4)𝑚 +
[−1, 1]. Let 𝑥1, . . . , 𝑥𝑚 ← [1, 2] be uniformly random and inde-
pendent values. Then, with probability Ω(1) there exists an (𝑚/2)-
element subset of 𝑥1, . . . , 𝑥𝑚 with sum in [𝑦 − log𝑛

𝑛 , 𝑦].

Proof. Let I𝑦 = [𝑦 − log𝑛
𝑛 , 𝑦]. Let random variable 𝑆 denote the

number of (𝑚/2)-element subsets of 𝑥1, . . . , 𝑥𝑚 with sum in I𝑦 .

Lemma 6.3. E[𝑆] ≥ Ω(1) .

Proof. Let 𝑧1, 𝑧2, . . . , 𝑧𝑚/2 be sampled uniformly from [1, 2].
Define random variable 𝑍 =

∑𝑚/2−1
𝑖=1

𝑧𝑖 . Let 𝑍
∗
denote the event

𝑍 ∈ [𝑦 − 2, 𝑦 − 1 − log𝑛
𝑛 ]. Then,

Pr

[
𝑍 + 𝑧𝑚/2 ∈ I𝑦

]
≥ Pr[𝑍 ∗] · Pr[𝑍 + 𝑧𝑚/2 ∈ I𝑦 | 𝑍 ∗] .

Bounding the probability in this manner is productive because 𝑍 ∗

is very likely, and conditional on 𝑍 ∗ the event 𝑍 +𝑧𝑚/2 ∈ I𝑦 is easy

to analyze. In particular,

E[𝑍 ] = (𝑚/2 − 1) · (3/2) ∈ [𝑦 − 3, 𝑦 + 3] .

Thus Fact 1 implies that Pr[𝑍 ∗] = Θ(1/
√
𝑚). If 𝑍 ∗ occurs, making

the (𝑚/2 − 1)-th partial sum very close to the desired value, then

with probability
log𝑛
𝑛 the value of 𝑧𝑚/2 makes 𝑍 + 𝑧𝑚/2 ∈ I𝑦 . So

we have found

Pr[𝑍 + 𝑧𝑚/2 ∈ I𝑦] ≥ Ω

(
log𝑛

𝑛
√
𝑚

)
≥ Ω

(√︁
log𝑛

𝑛

)
. (2)

Now we use (2) to show E[𝑆] is large. Using linearity of expecta-

tion over all

( 𝑚
𝑚/2

)
possible (𝑚/2)-element subsets of the 𝑥𝑖 ’s we

conclude:

E[𝑆] ≥ Ω

(√︁
log𝑛

𝑛

)
·
(
𝑚

𝑚/2

)
≥ Ω

(√︁
log𝑛

𝑛
· 2

log𝑛√︁
log𝑛

)
≥ Ω(1) .

□

Let𝐴1 denote a uniformly random value from [1, 2] and for each
𝑖 ∈ N let 𝐴𝑖+1 denote 𝐴𝑖 plus another random independent value

drawn from [1, 2].

Lemma 6.4. For any constant 𝜆 ∈ (0, 1), any 𝑖 ∈ N with 𝑖 ≤ 𝜆𝑚/2
and any 𝑎 ∈ R we have

Pr[𝐴𝑚/2 ∈ I𝑦 | 𝐴𝑖 = 𝑎] ≤ 𝑂

(√︁
log𝑛

𝑛

)
.

Proof. By Fact 1 we have that for any value of 𝐴𝑖 there is at

most a 𝑂 (1/
√︁
𝑚/2 − 𝑖) ≤ 𝑂 (1/

√
𝑚) chance that 𝐴𝑚/2−1 sums to

within 2 of𝑦. Conditional on𝐴𝑚/2−1 being this close to𝑦 there is at

most a
log𝑛
𝑛 chance that the value added to 𝐴𝑚/2−1 to make 𝐴𝑚/2

makes the sum 𝐴𝑚/2 precisely lie in the interval I𝑦 . Multiplying

these probabilities yields the desired bound. □

We now proceed with the proof of the theorem. We will use the

second moment method ([1]) to show that Pr[𝑆 > 0] ≥ Ω(1).

LetX denote the set of all size-𝑚/2 subsets of [𝑚]. For𝐴 ∈ X let

indicator variable 𝑆𝐴 ∈ {0, 1} indicate the event that
∑
𝑖∈𝐴 𝑥𝑖 ∈ I𝑦 .

Of course 𝑆 =
∑
𝐴∈X 𝑆𝐴 . Let 𝜆 = 4/5. We decompose E[𝑆2] as:

E[𝑆2] =
∑︁

𝐴,𝐵∈X2

𝐴=𝐵

Pr[𝑆𝐴 ∧ 𝑆𝐵] +
∑︁

𝐴,𝐵∈X2

|𝐴∩𝐵 |<𝜆𝑚/2

Pr[𝑆𝐴 ∧ 𝑆𝐵]

+
∑︁

𝐴,𝐵∈X2

𝜆𝑚/2≤ |𝐴∩𝐵 |<𝑚/2

Pr[𝑆𝐴 ∧ 𝑆𝐵] . (3)

Let 𝑇1,𝑇2,𝑇3 denote the three terms in (3) in the order they appear.

𝑇1 is simply E[𝑆]. Recall that Lemma 6.3 says E[𝑆] ≥ Ω(1). Thus,

𝑇1 = E[𝑆] ≤ 𝑂 (E[𝑆]2). (4)

We can bound the probability in the sum defining 𝑇2 using

Lemma 6.4. In particular, observe that 𝐴 ∩ 𝐵 is a sufficiently small

set, so if we condition on

∑
𝑖∈𝐴∩𝐵 𝑥𝑖 the conditional probabilities

of 𝑆𝐴, 𝑆𝐵 are at most 𝑂 ((
√︁
log𝑛)/𝑛). The number of terms in the

sum defining 𝑇2 is trivially at most |X|2. Thus, we have

𝑇2 ≤ 𝑂

(
log𝑛

𝑛2

)
·
(
𝑚

𝑚/2

)
2

≤ 𝑂 (1). (5)

The probabilities of 𝑆𝐴, 𝑆𝐵 in the sum defining𝑇3 might be highly

correlated so we cannot use the strong bound that we used when

bounding 𝑇2. Fortunately, for 𝐴 ≠ 𝐵 in order for both events 𝑆𝐴, 𝑆𝐵
to occur we need two distinct random values to land in specific

intervals of size
log𝑛
𝑛 . Specifically if 𝐴 ≠ 𝐵 then we can find 𝑖𝐵 ∈

𝐵 \𝐴 and 𝑖𝐴 ∈ 𝐵 \𝐴. Then, after conditioning on the value of 𝑥𝑖 for

each 𝑖 ∈ [𝑚] \ {𝑎, 𝑏} the probability that 𝑆𝐴 and 𝑆𝐵 both occur is at

most
log

2 𝑛

𝑛2
. Fortunately the number of terms in the sum defining

𝑇3 is not too large: it is at most(
𝑚

⌈𝑚𝜆/2⌉

) (
𝑚

𝑚/2 − ⌈𝑚𝜆/2⌉

)
2

,

because we can first chose 𝐴 ∩ 𝐵 and then chose 𝐴 \ 𝐵, 𝐵 \𝐴. Thus,

𝑇3 ≤
log

2 𝑛

𝑛2

(
𝑚

⌈𝜆𝑚/2⌉

) (
𝑚

𝑚/2 − ⌈𝑚𝜆/2⌉

)
2

.

Now we show 𝑇3 < 𝑜 (1). Using Fact 2 we have

𝑇3 ≤ 𝑂
©«
log

2 𝑛

𝑛2
2
𝑚𝐻 (𝜆/2)

2
2𝑚𝐻 ( (1−𝜆)/2) 1(√︁

log𝑛

)
3

ª®®¬ .
Thus

log𝑇3 ≤ 𝑂 (1) + log log𝑛 +
(
𝐻 (𝜆/2) + 2𝐻

(
1 − 𝜆
2

)
− 2

)
· log𝑛.

Evaluating the expression with 𝜆 = 4/5 we find log𝑇3 < −Ω(log𝑛).
Thus 𝑇3 < 𝑜 (1) as desired.

Now we combine our bounds on 𝑇1,𝑇2,𝑇3 to obtain, via the sec-

ond moment method (see chapter 4 of [1]), the bound

Pr[𝑆 > 0] ≥ E[𝑆]
2

E[𝑆2]
=

E[𝑆]2
𝑇1 +𝑇2 +𝑇3

≥ Ω(1).

□

We are now equipped to prove Theorem 6.1.

11
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Proof of Theorem 6.1. We call our allocator RSUM. We start

by giving a construction that works if 𝛿 ≤ 𝜀/4. At the end of the

proof we show how to modify this construction to work in the

case 𝛿 > 𝜀/4 as well. RSUM reserves 𝜀/2 free space for use as a

buffer , which will separate the main-body of memory and the

trash can: a suffix of the used portion of memory. The trash can,

buffer and main-body all start empty. It is important that the buffer

is at least the size of the largest item, i.e., 𝜀/2 ≥ 2𝛿 . If this is not the

case we will need a more involved construction for the buffer; we

discuss this at the end of the proof. RSUM reserves the remaining

𝜀/2 free space to enable RSUM to create waste by introducing up

to 𝛿−1/(2 log 𝜀−1) gaps of size up to 𝑔 = 𝜀𝛿 log 𝜀−1 in memory.

RSUM operates somewhat similarly to the GEO allocator of Sec-

tion 4 in that RSUM handles deletes by performing swaps that
introduce small amounts of waste in memory, and periodically

rebuilds memory to eliminate this waste. The main difference be-

tween RSUM andGEO is that RSUM swaps sets of items rather than

single items. This gives RSUM much greater flexibility, resulting in

its substantially lower cost.

RSUM groups the items in the main-body into blocks of𝑚 =

2⌈(log 𝜀−1)/2⌉ items; the items in the trash can are not part of

blocks. Blocks will be the basic units that facilitate RSUM’s swap

operations. Blocks are marked as either valid or invalid.

Handling Deletes. Suppose an item 𝐼 is deleted. RSUM forms a

set 𝑌 containing 𝐼 and roughly𝑚/2 − 1 other nearby items, with

total size 𝑦 ∈ 3

4
𝑚𝛿 + [−𝛿, 𝛿]. In particular, if 𝐼 is in the main-body

RSUM arbitrarily adds items contiguous with 𝐼 from the same block

to 𝑌 until the total size of 𝑌 lies in
3

4
𝑚𝛿 + [−𝛿, 𝛿]. If 𝐼 is in the trash

can RSUM simply adds arbitrary trash can items contiguous with 𝐼

to 𝑌 until the total size is appropriate. Constructing 𝑌 is possible

because items have size at most 2𝛿 .

RSUM then attempts to find a block 𝐵 near the end of the main-

body with a subset of elements 𝑆 whose sum 𝑧 is in the interval

[𝑦 −𝑔,𝑦]. We say that such a block is compatible with 𝑌 . To find a
compatible block RSUM checks whether the final valid block in the

main-body is compatible with 𝑌 . If it is not RSUM invalidates this

block and keeps trying valid blocks. If the number of valid blocks

ever becomes too small RSUM will abandon its search for a com-

patible block and instead handle the delete via a rebuild operation,
which will be described later. So we may assume RSUM finds a

valid block 𝐵 with corresponding subset 𝑆 of sum 𝑧 ∈ [𝑦 − 𝑔,𝑦].
RSUM now swaps 𝑆,𝑌 . To swap 𝑆,𝑌 , RSUM first takes items 𝑆

and arranges them contiguously in the region of memory where

items 𝑌 used to be, leaving a gap of size at most 𝑔. RSUM then takes

items 𝑌 \ {𝐼 } and items 𝐵 \ 𝑆 and arranges them contiguously in

the region of memory that was occupied by block 𝐵. We remark

that if 𝐼 is part of block 𝐵 the above steps do nothing. RSUM then

removes 𝐼 from memory. Once a block of items has been used for

a swap RSUM marks the block as invalidated. In particular, both

the block 𝐵 used to repair the delete and the block where the delete

occurred (if 𝐼 was in the main body) are invalidated.

To finish the swap RSUM pushes some blocks into the trash

can. Recall that the trash can is a suffix of the utilized portion of

memory, separated from the main-body by a small buffer. Once

an item 𝐼0’s block has been invalidated RSUM may place 𝐼0 in the

trash can. However, invalidated blocks need not be immediately

placed in the trash can. When a swap happens, taking items 𝑆 from

block 𝐵 to repair a delete, RSUM takes block 𝐵 and all blocks to

its right in the main-body and moves them to be contiguous with

the start of the trash can, and compacts them against the start of

the trash can. At this point RSUM no-longer considers items from

these pushed blocks to be part of any blocks.

When RSUM pushes blocks into the trash can it will potentially

increase the size of the buffer (i.e., the distance between the trash

can and the main body) due to the empty space created by removing

item 𝐼 from memory. If the buffer size now exceeds 𝜀/2 RSUM takes

items from the end of the trash can and rotates them to be flush

with the beginning until the buffer size is again at most 𝜀/2.

Handling Inserts. RSUM handles inserts by placing the inserted

item after the final item currently in memory and adding the in-

serted item to the trash can.

Performing Rebuilds. In addition to responding to deletes and

inserts as described above RSUM occasionally must perform expen-

sive rebuild operations that ensure necessary guarantees on the

layout of items in memory.

In the beginning RSUM uniformly randomly samples a rebuild
threshold 𝑟 ← (𝛿−1/(8𝑚), 𝛿−1/(6𝑚)) ∩ N. This counts as a “free
rebuild” (as a sentinel value). If an update would cause the number

of valid blocks to drop below 𝑟 , instead of handling it normally

RSUM randomly permutes all items, places them contiguously into

memory to eliminate all waste, and then logically partitions the

items into blocks of𝑚 contiguous items, starting from the right of

memory. RSUM then resamples 𝑟 .

We give pseudocode for RSUM in Algorithm 6. Now we verify

that RSUM is well-defined and analyze RSUM’s performance.

Lemma 6.5. RSUM places items in valid locations.

Proof. Note that the items present are always kept contiguous

except for small gaps introduced by swaps and the buffer between

the main-body and the trash can. Each swap creates wasted space at

most 𝑔 and invalidates at least 1 block. The total number of blocks is

⌊⌈𝛿−1/4⌉/𝑚⌋. RSUM certainly rebuilds before all blocks are invali-

dated. Hence, the wasted space never exceeds ⌊⌈𝛿−1/4⌉/𝑚⌋𝑔 ≤ 𝜀/2.
RSUM regulates the size of the buffer to be at most 𝜀/2, so this

ensures that if there is 𝐿 total size of items present at some point in

time then the items fit in the space [0, 𝐿 + 𝜀]. □

Lemma 6.6. RSUM’s worst-case expected update cost is𝑂 (log 𝜀−1).
The set of items to move at each update by RSUM can be computed
in expected time 𝑂 (𝜀−1/2).

Proof. RSUM clearly has cost𝑂 (1) per insert. Before analyzing
the expected cost of deletes, we analyze the rate at which blocks

are invalidated: this will dictate the cost of rebuilds.

We will show using Theorem 6.2 that in expectation only 𝑂 (1)
valid blocks must be checked before finding a compatible valid

block to handle each delete. Fix some delete. Let 𝑦 ∈ 3

4
𝑚𝛿 + [−𝛿, 𝛿]

be the size of the set of items 𝑌 contiguous with the deleted item

which we aim to swap. Suppose we are given a set 𝑋 of𝑚 items

with sizes chosen uniformly randomly and independently from

[𝛿, 2𝛿]. We claim that with constant probability there is a subset

12
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Figure 4: Operation of RSUM. Since valid blocks have never
been modified, their elements will look uniformly random –
by our analysis, we know they’re large enough that one of
the last couple valid blocks has a subset sum with size very
close to the neighbourhood of the deleted element. So, RSUM
swaps that subset in and then pushes a suffix of memory into
the trash can to eliminate the hole.

𝑋 ′ ⊂ 𝑋 such that

∑
𝑥∈𝑋 ′ 𝑥 ∈ [𝑦 − 𝑔,𝑦]. This follows immediately

from Theorem 6.2, with all sizes scaled down by a factor of 𝛿 .

Intuitively this means that the expected number of valid blocks

RSUM looks at on each delete should be 𝑂 (1). Now we formalize

this intuition. Define a phase to be the set of updates between

rebuild steps. Note that the set of items present is highly correlated

between phases, so great care is needed. However, we will argue

that RSUM’s periodic rebuild operations, where RSUM randomly

permutes all present items, guarantee the following property: Let𝐶𝑖
denote the event that the 𝑖-th check of a valid block’s compatibility

during a fixed phase succeeds. Then for all distinct 𝑖, 𝑗 the events

𝐶𝑖 ,𝐶 𝑗 are independent and occur each with probability Ω(1). We

call this property the “purity of valid blocks”.
We now argue why the purity of valid blocks property holds.

If a block is valid, it means that RSUM has not touched or even

looked at the items in the block during the phase so far. Since the

set of items sizes present at the start of the phase is equivalently

distributed to randomly sampled items, the sizes of the items in each

valid block is equivalently distributed to randomly sampled items,

as their randomness has not been spoiled. Thus, the events 𝐶𝑖 are

Algorithm 6 Random-Item Sequence: RSUM
Assume 𝛿 < 𝜀/4

1: Choose random rebuild threshold 𝑟 ∈
(
𝛿−1
8𝑚 , 𝛿

−1
6𝑚

)
∩N, initialize

the trash can, buffer and main-body to be empty and consider

this a “free rebuild”.

2: if at any time there are fewer than 𝑟 remaining valid blocks

then
3: Perform a rebuild:

4: Stop the current operation.

5: Compact all the items, eliminating all gaps.

6: Randomly permute the items.

7: Logically partition the items into blocks of𝑚 contiguous

items, starting from the end of memory.

8: Mark all blocks as valid.
9: Set the trash can to be empty.

10: Resample 𝑟 ∈
(
𝛿−1
8𝑚 , 𝛿

−1
6𝑚

)
∩ N

11: if an item 𝐼 is inserted then
12: Place 𝐼 immediately after the currently final item and add 𝐼

to the trash can.

13: else if an item 𝐼 is deleted then
14: Let𝑌 be a set of items contiguous with 𝐼 , including 𝐼 , whose

total size 𝑦 satisfies 𝑦 ∈ 3

4
𝑚𝛿 + [−𝛿, 𝛿]; this is possible because

the maximum item size is 2𝛿 . If 𝐼 is not in the trash can choose

these items to be in the same block as 𝐼 .

15: while there is no subset of the final valid block with total

size in [𝑦 − 𝑔,𝑦] do
16: Invalidate the final valid block.

17: Let 𝐵 be the final valid block and let 𝑆 be a subset of 𝐵 with

total size in [𝑦 − 𝑔,𝑦].
18: Take items 𝑆 and arrange them contiguously in the region

of memory where items 𝑌 used to be, leaving a gap of size at

most 𝑔.

19: Take items (𝑌 \{𝐼 })∪(𝐵\𝑆) and arrange them contiguously

in the region of memory that was occupied by block 𝐵

20: Invalidate all blocks involved in the swap.

21: Remove item 𝐼 from memory, introducing a gap in block 𝑋 .

22: Take the block 𝑋 and all blocks to its right not yet in the

trash can and move all of these items into the trash can, com-

pressing them to eliminate gaps between them.

23: if the buffer has now grown too large then
24: Take an item from the end of the trash can and swap it

to the beginning of the trash can.

indeed independent random variables, and occur with probability

Ω(1) by the argument above (i.e., applying Theorem 6.2).

Thus, the expected number of blocks that RSUM invalidates on

each delete is the expectation of a geometric random variable with

probability Ω(1) of occurring and hence is 𝑂 (1). In particular this

implies that the expected number of steps before there are fewer

than 𝑟 valid blocks is Ω(𝛿−1/𝑚).
Now we analyze the expected cost of update 𝑢. There are four

costs that we must analyze: the costs due to (1) rebuilding, (2)

swapping items to handle deletes, (3) pushing items into the trash

can, and (4) rotating items to make the buffer sufficiently small.

13



SPAA ’24, June, 17-21, 2024, Nantes, France Martin Farach-Colton, William Kuszmaul, Nathan Sheffield, and Alek Westover

Intuitively, because each phase has expected length Ω(𝛿−1/𝑚) and
because the rebuild threshold 𝑟 is random, the expected cost of

rebuilding per update is 𝑂 (log 𝜀−1); we formalize this Lemma 6.7

after discussing the other costs.

The swap operation has cost 𝑂 (𝑚) ≤ 𝑂 (log 𝜀−1) because there
are 𝑂 (𝑚) items amongst the two blocks involved in the swap. Re-

pairing the buffer has cost 𝑂 (1): it requires moving at most 𝑂 (1)
items. Now we analyze the cost of pushing items into the trash can.

Using the purity of valid blocks property we have that every delete

decreases the number of valid blocks by at most 𝑂 (1) in expecta-

tion. Since RSUM always rebuilds before the number of valid blocks

drops below 𝛿−1/(8𝑚) at most 1/2 of the blocks are invalid at any

point. Since the delete locations are uniformly random, the subset

of blocks that are invalid is uniformly distributed in the main-body,

conditional on its size. Thus, in expectation the number of blocks

that RSUM must push to the trash can on update 𝑢 is at most twice

the number of blocks it invalidates. As RSUM invalidates 𝑂 (1) ex-
pected blocks, it only pushes 𝑂 (1) expected blocks to the trash can

in total, for which it incurs cost 𝑂 (log 𝜀−1).
Now we formally analyze the expected cost due to rebuilding.

Lemma 6.7. The expected cost of rebuilding on update 𝑢 in RSUM
is 𝑂 (log 𝜀−1).

Proof. Fix some update 𝑢. Let 𝐿 = 𝛿−1/(8 log 𝜀−1) be the maxi-

mum number of blocks that can be invalidated during a phase. Note

that the minimum number of blocks that must be invalidated in

each phase is 𝛿−1/(12 log 𝜀−1) = 2𝐿/3. Recall that by the purity of

valid blocks property the random variables 𝐶𝑖 , indicating whether

the 𝑖-th check for compatibility succeeds within some fixed phase

are independent and each occur with probability 𝑝 ≥ Ω(1). Thus,
by a Chernoff Bound, the length of each phase, i.e., the number of

updates that are handled during that phase, is at least 𝐿𝑝/50 with
probability 1− 𝑒−Ω (−𝐿) . Thus, with exponentially good probability

there are at most ⌈50/𝑝⌉ rebuilds during the interval [𝑢 − 𝐿,𝑢].
For each 𝑖 ∈ [⌈50/𝑝⌉] the chance that 𝑢 is responsible for the 𝑖th

rebuild in [𝑢 − 𝐿,𝑢] is at most𝑂 (1/𝐿). Applying a union bound we

see that update 𝑢 is responsible for a rebuild with probability at

most 𝑂 (1/𝐿). Note that it is impossible for 𝑢 to be responsible for

multiple rebuilds. Thus, the expected cost of performing a rebuild

on update 𝑢 is at most

𝑂 (𝛿−1/𝐿) ≤ 𝑂 (log 𝜀−1) .

□

Now we analyze the expected running time required to compute

RSUM’s strategy. The running time is dominated by the expected

𝑂 (1) times that RSUM must check if a valid block is compatible to

handle the delete. Each such check can be performed by computing

all subset sums of the 𝑚 item sizes in the valid block that it is

checking. This requires 𝑂 (𝜀−1/2) time by using the meet-in-the-

middle algorithm for finding subset sums. □

In the above analysis we have assumed 𝛿 ≤ 𝜀/4 for simplicity of

exposition. The only place we used this assumption is in construct-

ing the buffer that separates the trash can from the main-body: a

simple buffer requires an items-worth of slack. We now show how

to handle the regime 𝛿 > 𝜀/4 as well.

Lemma 6.8. RSUM can be modified to work for 𝛿 > 𝜀/4.

Proof. We now describe a more complicated buffer manage-

ment strategy that allows RSUM to handle 𝛿 > 𝜀/4. Fix some delete.

After pushing items into the trash can on this delete RSUM stashes
the final valid block from the main-body: that is, RSUM temporarily

considers this block to not be contained in memory. Then RSUM
rotates items from the back of the trash can to the front until the

distance between the main-body and the start of the trash can is

some value 𝑦 ∈ (3/4)𝑚𝛿 + [−𝛿, 𝛿]. Then, RSUM attempts to find

a subset 𝑆 of the stashed block summing to a value in the range

[𝑦 − 𝜀/2, 𝑦]. RSUM will succeed with constant probability due to

Theorem 6.2, which applies because 𝜀/2 > 𝑔 due to 𝛿 = poly(𝜀). If
RSUM fails, it invalidates the stashed valid block, pushes it and all

blocks to its right into the trash can, and redoes the the stashing

and cycling steps from above using the next valid-block. By the

same analysis as in Lemma 6.6 in expectation it takes at most 𝑂 (1)
tries before RSUM successfully finds a valid block with a subset 𝑆

summing to a value in the range [𝑦−𝜀/2, 𝑦]. Suppose RSUM finds a

block with items 𝐵 that has a subset 𝑆 with the desired sum. RSUM
then places all items 𝐵 in the trash can. However, RSUM places

items 𝑆 at the front of the trash can and items 𝐵 \ 𝑆 at the end of

the trash can. Then, the gap between the main-body and the trash

can is of size at most 𝜀/2, as desired.
Clearly this more complex buffer management scheme increases

the cost of RSUM’s updates and the time required to compute

RSUM’s strategy by at most constant factors.

□

□

7 CONCLUSION
Our main contribution in this paper is an allocator for the mem-

ory reallocation problem achieving expected update cost 𝑂 (𝜀−1/2).
However, there are several indications that it should be possible to

construct an allocator with much lower expected update cost.

Kuszmaul has already established that if all items are smaller than

𝜀4 then there is an allocator with expected update cost 𝑂 (log 𝜀−1).
Using similar techniques to the covering sets introduced in this

paper one can see that there are efficient allocators for sets of items

with few distinct sizes and where and all sizes are fairly similar.

Combined with the standard technique of discretizing item sizes

this approach becomes even more powerful. Thus, “structured” sets

of items can be handled efficiently. On the other hand, we gave an

allocator that achieves update cost 𝑂 (log 𝜀−1) for large stochastic
items. Thus, it seems plausible that there is a “structure versus

randomness” dichotomy that can be exploited to achieve better

allocators for arbitrary items. We leave constructing an allocator

with expected update cost 𝑜 (𝜀−1/2), or strengthening our lower

bound, as open problems.
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A OMITTED LEMMAS
In this section we prove several lemmas omitted from the main

paper.

Fact 1. Fix constants 𝑎, 𝑏 > 0. Let 𝑥1, . . . , 𝑥𝑛 ← [0, 1] be chosen
uniformly randomly and independently. Then

Pr

[
𝑛∑︁
𝑖=1

𝑥𝑖 ∈ [𝑛/2 − 𝑎, 𝑛/2 + 𝑏]
]
= Θ(1/

√
𝑛) .

Proof. According to [12] there exists an absolute constant𝐶 > 0

such that the following holds. Suppose𝑦1, 𝑦2, . . . , 𝑦𝑛 ← [−1/2, 1/2]
are chosen uniformly randomly and independently. Then for any

𝑡 > 0 we have:�����Pr
[����� 𝑛∑︁
𝑖=1

𝑦𝑖

����� ≤ 𝑡
√
𝑛

]
−𝐶

∫ 𝑡

−𝑡
𝑒−𝑢

2/2𝑑𝑢

����� ≤ 𝑂 (1/𝑛). (6)

Let 𝑐 ∈ {𝑎, 𝑏} and take 𝑡 = 𝑐/
√
𝑛. Then∫ 𝑡

−𝑡
𝑒−𝑢

2/2𝑑𝑢 = Θ(1/
√
𝑛) .

Using this in (6) we find

Pr

[����� 𝑛∑︁
𝑖=1

𝑦𝑖

����� ≤ 𝑐

]
= Θ(1/

√
𝑛).

By symmetry we then have

Pr

[
𝑛∑︁
𝑖=1

𝑦𝑖 ∈ [0, 𝑐]
]
= Pr

[
𝑛∑︁
𝑖=1

𝑦𝑖 ∈ [−𝑐, 0]
]
= Θ(1/

√
𝑛) .

Summing the probability of the sum landing in either of [0, 𝑏], [−𝑎, 0]
and translating the 𝑦𝑖 ’s by +1/2 and gives the desired bound. □

Lemma 4.3. Fix 𝑎, 𝑏,𝑊 ∈ R with 0 ≤ 𝑎 < 𝑏, and𝑊 > 0. Let
𝑥1, 𝑥2, . . . be uniformly and independently sampled from (𝑊 /2,𝑊 ).
The probability that there exists 𝑗 with

∑
𝑖≤ 𝑗 𝑥𝑖 ∈ [𝑎, 𝑏] is at most

4(𝑏 − 𝑎)/𝑊 .

Proof. If 𝑏 − 𝑎 ≥𝑊 /4 the statement is vacuously true. So, we

may assume 𝑏 − 𝑎 <𝑊 /4.
For each 𝑧 ∈ R let H(𝑧) denote the event that there exists 𝑗 with∑
𝑖≤ 𝑗 𝑥𝑖 = 𝑧. Let H(𝑎, 𝑏) denote the event that there exists 𝑗 with∑
𝑖≤ 𝑗 𝑥𝑖 ∈ [𝑎, 𝑏]. Observe that H(𝑎, 𝑏) =

∫ 𝑏

𝑎
H(𝑧)𝑑𝑧. If 𝑏 ≤𝑊 then

Pr[H(𝑎, 𝑏)] ≤ 2(𝑏 − 𝑎)/𝑊 . Suppose 𝑏 >𝑊 .

In order for H(𝑎, 𝑏) to happen the following must occur: there

must be 𝑗 ∈ N and 𝑧 ∈ (𝑎 −𝑊,𝑏 −𝑊 /2) such that

∑
𝑖≤ 𝑗 𝑥𝑖 = 𝑧,

and then 𝑥 𝑗+1 must satisfy 𝑧 + 𝑥 𝑗+1 ∈ [𝑎, 𝑏]. Observe that events
H(𝑧),H(𝑧′) are disjoint if |𝑧 − 𝑧′ | ≤𝑊 /2. Thus we have:

Pr[H(𝑎, 𝑏)] ≤
∫ 𝑏−𝑊 /2

𝑎−𝑊

2(𝑏 − 𝑎)
𝑊

H(𝑧)𝑑𝑧 ≤ 4(𝑏 − 𝑎)
𝑊

.

□

Lemma 4.4. Fix integers 𝑦, 𝑁 ∈ N. Let 𝑥1, 𝑥2, . . . be uniformly and
independently sampled from [⌈𝑁 /4⌉, ⌈𝑁 /3⌉] ∩ N. The probability
that there exists 𝑗 with

∑
𝑖≤ 𝑗 𝑥𝑖 = 𝑦 is at most 100/𝑁 .

Proof. For any 𝑧 ∈ Z let H(𝑧) denote the event that there exists
𝑗 with

∑
𝑖≤ 𝑗 𝑥𝑖 = 𝑧. If H(𝑦) then we must either have 𝑦 ≤ ⌈𝑁 /3⌉ or

else H(𝑦 − 𝑖) is true for some 𝑖 ∈ [⌈𝑁 /4⌉, ⌈𝑁 /3⌉]. In the case that

𝑦 ≤ ⌈𝑁 /3⌉ we clearly have Pr[H(𝑦)] ≤ 100/𝑁 . Now, suppose 𝑦 >

⌈𝑁 /3⌉. Observe that {H(𝑦 − 𝑖) | 𝑖 ∈ [⌈𝑁 /4⌉, ⌈𝑁 /3⌉]} are disjoint
events. Thus,

⌈𝑁 /3⌉∑︁
𝑖=⌈𝑁 /4⌉

Pr[H(𝑦 − 𝑖)] ≤ 1.

Thus we have

Pr[H(𝑦)] ≤
⌈𝑁 /3⌉∑︁

𝑖=⌈𝑁 /4⌉

Pr[H(𝑦 − 𝑖)]
⌈𝑁 /3⌉ − ⌈𝑁 /4⌉ + 1 ≤ 100/𝑁 .

□
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