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Abstract

We study the following generalization of the Hamiltonian cycle problem: Given integers a, b and graph
G, does there exist a closed walk in G that visits every vertex at least a times and at most b times?
Equivalently, does there exist a connected [2a, 2b] factor of 2b · G with all degrees even? This problem
is NP-hard for any constants 1 ≤ a ≤ b. However, the graphs produced by known reductions have
maximum degree growing linearly in b. The case a = b = 1 — i.e. Hamiltonicity — remains NP-hard
even in 3-regular graphs; a natural question is whether this is true for other a, b.

In this work, we study which a, b permit polynomial time algorithms and which lead to NP-hardness
in graphs with constrained degrees. We give tight characterizations for regular graphs and graphs of
bounded max-degree, both directed and undirected.

1 Introduction

1.1 Background and Previous Work

The Hamiltonian cycle problem asks, given a graph G, whether G admits a closed walk visiting every vertex
exactly once. A classic result of Garey, Johnson and Tarjan is that Hamiltonicity is NP-hard even in graphs
of max degree 3, and in fact even in 3-regular graphs [GJT76].

In 1990, Broersma and Göbel proposed two variants of the Hamiltonian cycle problem: for fixed k, is there
a closed walk that visits each vertex exactly k times, or at least once and at most k times, respectively? They
showed that for constant k, both of these problems are NP-hard [BG90]. Jackson and Wormald subsequently
proved that both problems remain NP-hard in j-connected graphs for any constant j [JW90]. These proofs
extend to give hardness of the following generalization:

Definition 1. For fixed integers 1 ≤ a ≤ b, a graph G is called [a, b]-HAM if there exists a closed walk on
G that visits each vertex at least a times and at most b times.

Being [a, b]-HAM can be considered as a graph factor problem. Letting 2b ·G be the multigraph obtained
by making 2b copies of each edge in G, G is [a, b]-HAM if and only if 2b · G contains a spanning even
[2a, 2b] factor ; that is, a connected subgraph containing all vertices of G, with every degree even and in
[2a, 2b]. The equivalence of this formulation follows from taking an Euler tour.

There is a substantial body of combinatorics work seeking sufficient conditions for the existence of graph
factors and walks; see Plummer’s survey [Plu07], the book by Akiyama and Kano [AK11], or the survey
by Kouider and Vestergaard which focuses specifically on connected factors [KV05]. For example, Gao and
Richter showed that any 3-connected planar graph is [1, 2]-HAM [GR94], and Schmid and Schmidt gave
a polynomial-time algorithm to find such a walk in which only the 3-separators are visited twice [SS18].
Several variants of the problem have also been consider from an algorithmic complexity standpoint. Ganian
et al consider the case where a is nonconstant in n, showing that [a, a]-HAM is NP-hard for a ≤ O(n1−ε),
but in RP for a ≥ Ω(n/ log n) [Gan+19]. Nishiyama et al show that there is a polynomial-time algorithm to
determine whether a graph has a walk visiting every vertex an odd number of times, but that the problem
becomes NP-hard when each edge can be traversed at most 3 times [Nis+18].

In this work, we will study the complexity of [a, b]-HAM in regular graphs and graphs of constant maximum
degree. Prior papers have investigated degree conditions sufficient to guarantee [a, b]-HAM — for instance
Kouider and Vestergaard showed that, for a ≥ 2, any 2-connected graph with minimum degree an/(a + b)
is [a, b]-HAM [KV04], and independent papers by Gao and Richter, Jin and Li respectively showed that any
2-connected graph with maximum degree 2b − 2 is [1, b]-HAM [JL04; Kai+07]. However, to our knowledge
we are the first to consider the algorithmic complexity of [a, b]-HAM in general bounded degree graphs.
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1.2 Results

Our main results are tight characterizations for the hardness of [a, b]-HAM in regular graphs, graphs of
bounded max-degree, and bounded max-degree digraphs. Interestingly, the thresholds for which a, b lead
to NP-hardness are very different in each of these settings. In regular graphs, we find that hardness is
determined by the maximum visit count b in comparison to the degree d, where the parity of d is very
important:

Theorem 1. When restricted to d-regular graphs, [a, b]-HAM is NP-hard if either d is even and b < d/2, or
d is odd and b < d. Otherwise, [a, b]-HAM ∈ P.

In graphs of bounded max degree, we find instead that hardness is determined by the ratio of b to a in
comparison to the max degree d, and that a = 1 is a special case:

Theorem 2. When restricted to graphs of maximum degree d, [a, b]-HAM is NP-hard if either a = 1 and
b < d, or a > 1 and b

a < d− 1. Otherwise, [a, b]-HAM ∈ P.

For directed graphs, [a, b]-HAM turns out to always be hard in graphs of maximum degree 4, and hard
in graphs of maximum degree 3 unless a = b or b = 1:

Theorem 3. In directed graphs of maximum degree 3, for 1 ≤ a ≤ b, [a, b]-HAM ∈ P if a = b > 1, and
NP-hard otherwise.

Theorem 4. For all b ≥ a ≥ 1, [a, b]-HAM is NP-hard in directed graphs of maximum degree 4.

The hardness proofs for maximum degree digraphs easily extend to show hardness in regular digraphs.

1.3 Preliminaries

Introducing Depletors. Now we introduce the notion of a depletor gadget which will be used in all of
our hardness reductions. We introduce this notion by showing that [a, b]-HAM is hard in unrestricted graphs.

Lemma 1 (Broersma, Göbel [BG90]). In unrestricted graphs, for any constants 1 ≤ a ≤ b, [a, b]-HAM is
NP-hard.

Proof. We reduce from [1, 1]-HAM (i.e. the standard Hamiltonian cycle problem). Given a graph G, we
build a new graph G′ by gluing to each vertex b− 1 triangles, as shown in Figure 1. In any [a, b]-HAM cycle
each of these triangles must be visited — this accounts for b− 1 of the visits for each of the vertices in G, so
the rest of the walk when restricted to G must be a Hamiltonian cycle. For the other direction, note that it
is possible to satisfy the visit requirements of the each triangle by stepping up to it, walking back and forth
a− 1 times, and then stepping back down, contributing only 1 additional visit to the vertex we attached the
triangles to. So, if G is Hamiltonian then G′ is [a, b]-HAM.

Figure 1: Reducing [1, 1]-HAM to [3, 3]-HAM.

In general a depletor gadget is some small graph that we glue to the starting graph G that forces vertices
to be visited many times. In Lemma 1, triangles are serving as depletors, since they each contribute a visit
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to the vertex they’re glued to. In future sections, we will need depletors with stronger properties, such as
forcing an attachment edge to be traversed many times.

Introducing Labellings.
Given an [a, b]-HAM cycle, we can label each edge of the graph G with the number of times it’s traversed

in the cycle. These labels satisfy the following properties:
• the sum of the labels on the edges adjacent to each vertex is an even number at least 2a and at most 2b,
and

• the subgraph on edges with non-zero labels is connected.
Now, given such a labeling, we could create a multigraph by including each edge with multiplicity given

by its label. Since all vertices in this multigraph have even degree, we can (efficiently) find an Eulerian
cycle in the multigraph, which is then an [a, b]-HAM cycle in the original graph. So, finding a labeling with
these properties is equivalent to finding an [a, b]-HAM cycle; this perspective will make the problem easier
to reason about.

A Technical Note. Finally, we remark that, throughout this paper, degree bounds will be assumed to be
greater than or equal to 3. All problems we consider are trivial in graphs of maximum degree 2, and so we
will refrain from mentioning this special case. We will use “maximum degree” to refer to any upper bound
on the degrees of a graph. In particular, a graph with no degree larger than d is a max-degree d graph even
if it does not have a vertex achieving that degree. In directed graphs, degree refers to the sum of in-degree
and out-degree.

Another piece of notation that is important to note is that we will write x mod y to denote the remainder
when x is divided by y (as opposed to the equivalence class x+ yZ).

2 Complexity characterization in d-regular graphs

2.1 Easiness

We claim that [a, b]-HAM can be solved in polynomial time for d-regular graphs, as long as either d is even
and b ≥ d/2, or d is odd and b ≥ d. The reason for this is simple: the following two lemmas demonstrate
that any connected d-regular graph is [a, b]-HAM for such b.

Lemma 2. For even d, any d-regular graph is [d/2, d/2]-HAM. For odd d, any d-regular graph is [d, d]-HAM.

Proof. If d is even, then the graph is Eulerian — taking an Euler tour will visit every vertex exactly d/2
times. If d is odd, we can duplicate all its edges to get a 2d-regular multigraph — an Euler tour in that
multigraph visits every vertex exactly d times.

Now we use Tutte’s two-factor theorem to extend Lemma 2 to more [a, b]. Specifically, the form of Tutte’s
two-factor theorem that we use is:

Fact 1. If H is a 2k-regular multigraph, its edges can be partitioned into k distinct 2-factors (i.e. 2-regular
sub-multigraphs).

Using Fact 1 we obtain:

Lemma 3 (Broersma, Göbel [BG90]). If a graph G is [b, b]-HAM for some b, then it’s also [b′, b′]-HAM for
all b′ > b.

Proof. Let H be the multigraph corresponding to a [b, b]-HAM walk on G. This is a 2b-regular multigraph, so
we can find a multigraph two-factor by Tutte’s two-factor theorem. Duplicating all edges in that two-factor,
we have a multigraph corresponding to a [b + 1, b + 1]-HAM walk on G. Repeating this process gives the
desired claim.

Since a [b, b]-HAM cycle is also an [a, b]-HAM cycle for a < b, we’ve shown the easiness part of the claim.
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2.2 Hardness

2.2.1 Depletors

The first step in the hardness argument is to construct depletors. We would like a small structure that can
always be part of an [a, b]-HAM cycle as long as it’s visited at least once.

We will describe such a d-regular depletor for even d with two attachment edges and 2d vertices. Add
an edge between vi and vj whenever (i− j) mod 2d ∈ {−d/2, . . . , d/2}. Now, cut the edges (v2d, v3d/2) and
(v1, vd/2+1), and add the edge (v3d/2, vd/2+1) — note that this is in fact a new edge since

(3d/2− d/2− 1) mod 2d ̸∈ {−d/2, . . . , d/2}.

So, if we add an edge leaving the gadget from each of v2d and v1, the construction will be d-regular.

Figure 2: Labellings corresponding to [b, b] walks on 4-regular and 5-regular depletors, respectively.

Lemma 4. For any b ≥ a ≥ 1, there is a valid [a, b]-HAM traversal of this even-regularity depletor in which
each attachment edge is traversed exactly once.

Proof. Assign each edge (vi, vi+1) of the gadget to be traversed b times, and assign the edge (v2d, v1) to be
traversed b− 1 times; see Figure 2.

Note that this gadget required two attachment edges. This is a necessary consequence of the regularity
constraint: since d is even, there must be an even number of half-edges within the gadget, meaning that the
number of edges leaving the gadget must be even.

When d is odd, we can construct a d-regular depletor needing only one leaving edge. Start with the
complete graph Kd+1, and then delete all edges (vi, vi+(d+1)/2) except for the edge (v1, v(d+1)/2+1). At this
point, every vertex has degree (d − 1), except for v1 and v(d+1)/2+1, which have degree d. So, we add a
(d+2)-th vertex v∗, with edges to every other vertex except v1 and v(d+1)/2+1, and a single edge leaving the
construction — note that the result is now d-regular.

Lemma 5. For any b ≥ 2, there is a valid [a, b]-HAM traversal of this odd-regularity depletor in which the
attachment edge is traversed exactly twice.

Proof. Assign all the edges in the loop passing through all vertices to be traversed b− 1 times, and then add
one more traversal to the edges (vi, v(i+1) mod d+2); see Figure 2.

2.2.2 Reductions

These depletor gadgets let us use the construction from Lemma 1 to resolve the case of even d.

Lemma 6. For even d, if a ≤ b < d/2, then [a, b]-HAM is NP-hard in d-regular graphs.

Proof. We reduce from [1, 1]-HAM in (d− 2b+ 2)-regular graphs, which is known to be NP-hard as long as
(d−2b+2) > 2 — i.e. as long as b < d/2. Given a (d−2b+2)-regular graph G, we construct G′ by attaching
(b − 1) copies of the d-regular depletor of Lemma 4 to each vertex. Recall that this depletor required two
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attachment edges, so G′ is d-regular. But now, note that in the process of visiting each depletor gadget once,
each vertex from G must be visited at least b−1 times, leaving room for only 1 additional visit. So, if G was
not Hamiltonian, G′ is not [a, b]-Hamiltonian for any a. Conversely, if G was Hamiltonian, then by Lemma 4
we can extend the Hamiltonian cycle to a [b, b]-HAM cycle by visiting each depletor exactly once.

This argument is not immediately sufficient for the case of odd regularity, however. Applying the same
construction would yield the following:

Lemma 7. For odd d, if a ≤ b < d− 1, then [a, b]-HAM is NP-hard in d-regular graphs.

To be tight with our easiness results, however, we would like to show hardness of [a, b]-HAM when b < d.
The gap here is coming from our base case: the hard problem we have to reduce from in 3-regular graphs is
[1, 1]-HAM, whereas we need to show that even [1, 2]-HAM and [2, 2]-HAM are hard. Fortunately, a slightly
more involved reduction closes this gap.

Lemma 8. For odd d, if a ≤ d− 1, then [a, d− 1]-HAM is NP-hard in d-regular graphs.

Proof. We reduce from [1, 1]-HAM in 3-regular graphs. Let G be a 3-regular graph; we construct G′ as
follows:
• Glue d− 3 depletors to each vertex in G.
• Trisect each of G’s original edges — that is, replace them with paths containing 2 intermediate nodes.
• Glue d− 2 depletors to each of the intermediate nodes just added.
Using the d-regular depletors of Lemma 5, this construction is d-regular. We would like to show that G′ is
[d− 1, d− 1] Hamiltonian if G is Hamiltonian, and otherwise not even [1, d− 1] Hamiltonian — this suffices
to prove the lemma.

Figure 3: Reduction from [1, 1]-HAM in 3-regular graphs to [4, 4]-HAM in 5-regular graphs. Red outgoing
edges represent depletors.

First, note that if you ignore the depletors, each intermediate node must be visited exactly once, since
the depletors contribute d − 2 of the d − 1 allowed visits. Thus, each edge gadget must be labeled either
1, 1, 1 or 2, 0, 2; see Figure 4.

Figure 4: The two possible labelings of the edge gadget.

The depletors contribute d − 3 visits to each of the original vertices, so each has an additional label
budget of only 4; this means that for every original vertex, exactly two of the three incident edge gadgets
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must be labeled 1, 1, 1. So, the edges of G corresponding to 1, 1, 1 edge gadgets in G′ form a 2-factor; see
Figure 5. But now, suppose this 2-factor had multiple connected components. Since 2, 0, 2 edges do not
create connectivity, this would mean that the labeling of G′ was not connected, and so couldn’t correspond to
a [1, d−1]-HAM walk. Thus, G′ can be [1, d−1]-HAM only if G had a connected 2-factor, i.e. a Hamiltonian
cycle.

Figure 5: The edge gadgets labeled 1, 1, 1 must correspond to a Hamiltonian path.

The reverse direction follows by the same logic: given a Hamiltonian cycle in G, we label all edge gadgets
corresponding to the cycle 1, 1, 1 and all edge gadgets not in the cycle 2, 0, 2; visiting each depletor once
gives a [d− 1, d− 1]-HAM labeling.

Combining the above lemmas gives a complete characterization of the hardness of [a, b]-HAM in regular
graphs.

Theorem 1. When restricted to d-regular graphs, [a, b]-HAM is NP-hard if either d is even and b < d/2, or
d is odd and b < d. Otherwise, [a, b]-HAM ∈ P.

3 Complexity characterization in graphs of max-degree d

We now have a tight understanding of when [a, b]-HAM is hard in regular graphs. If, instead, we just cared
about graphs with constant maximum degree, the hardness results would translate, but easiness would not.
We show in this section that in fact the true threshold for hardness in this setting looks very different:
complexity is determined not by b but by the ratio b

a .
For our easiness result, we will note that testing [a, b]-Hamiltonicity is easy in trees, and then show that

when b
a ≤ d − 1, for a > 1, any failure of [a, b]-Hamiltonicity is witnessed by a tree-like subgraph. To

show hardness, we will exploit a few low-degree vertices to construct and fine-tune highly efficient depletor
gadgets.

3.1 Easiness

First, we observe that without loss of generality an [a, b]-HAM walk never traverses a given edge more than
2a times:

Lemma 9. Let G be a graph. If G has an [a, b]-HAM labeling, it has such a labeling with maximum label
at most 2a.

Proof. Take such an [a, b]-HAM walk, and consider an edge with label more than 2a. Each of the vertices
incident to that edge is therefore visited at least a + 1 times by the walk — so, if we subtract 2 from the
label of that edge, each of them will still be visited at least a times, and the labeling will still be valid.

Now, we give an algorithm for [a, b]-HAM in trees, which will be an important component of our algorithm
for [a, b]-HAM in general graphs.
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Lemma 10. Let b ≥ a ≥ 1, and let G be a tree. There is a linear-time algorithm to determine whether G
is [a, b]-HAM.

Proof. Arbitrarily root the tree. We will work from the bottom-up, recording for each edge the set of label
values that can extend to a valid labeling in the subtree below it. In fact, we will show that for each edge e the
set of labels for e that can extend to a valid labelling in the subtree below e is of the form {ℓe, ℓe + 2, . . . , ue}
for even integers ℓe, ue. Thus, it will suffice to record for each edge e the minimum and maximum labels
ℓe, ue which can extend to valid labellings in the subtree below e.

Start by setting ℓe = 2a, ue = 2b for each edge e incident to a leaf of the tree: these edges must be
traversed at least 2a times in order to visit the leaves a times. Now we repeatedly apply the following
process to find ue, ℓe for all edges in the tree:

Find a vertex v such that all edges in the subtree rooted at v have been labelled. Let Lv, Uv be the sum
of ℓe′ , ue′ respectively over edges e′ going down from v. Let e be the edge going up the tree from v. We
claim that the valid labels for e are precisely the even numbers in the interval [ℓe, ue] defined by

ℓe = max(2, 2a− Uv), ue = 2b− Lv.

First we argue that labelling for e must lie in this set; then we will argue that any labels in this set can be
extending to labellings on the subtree. The label on e must be even because all of the edges going down
from v have even labels (by induction). The label on e cannot be zero, or else the labelling is not connected.
The label on e must be at least 2a− Uv or else vertex v is not visited enough times. The label on e cannot
be larger than 2b− Lv or else vertex v is visited too many times. It is clear that for any even k ∈ [ℓe, ue], if
we give e label k, then there is a compatible labelling of the subtree rooted at v.

If at any step in the process an edge e is given ℓe > ue, then we deduce that there is no valid labelling
of the tree. Otherwise, the process will terminate with every edge having ℓe, ue with ℓe ≤ ue. To finish our
check of whether the tree is [a, b]-HAM we simply iterate over all possible ways of assigning labels to the edges
incident to the root, taken from their corresponding allowed sets [ℓe, ue] ∩ 2Z. If there is any combination
of labels of the edges incident to the root that satisfies the root, then by construction of the allowed label
sets, we can extend the labellings given to each e incident to the root to the entire subtree below e. Thus,
we can label the entire tree.

We now use this procedure for trees as part of an algorithm for [a, b]-HAM in general graphs in the case
a > 1. Afterwards we will analyze the case a = 1, which is simple but (somewhat surprisingly) meaningfully
different from the case a > 1.

Lemma 11. For any d and any b ≥ a > 1 such that b
a ≥ (d− 1), there exists a polynomial-time algorithm

to test whether a graph G of max degree d is [a, b]-HAM.

Proof. The first step of the algorithm is to search for tree derivations. Call an edge e ∈ E(G) dangerous
if it does not belong to any cycle in G (the set of dangerous edges can be compute easily using connectivity
tests on modified versions of the graph). The tree derivation stage will assign labels to all dangerous edges.

The means of performing a derivation is exactly as described in Lemma 10. The set of dangerous edges
forms a forest, so for each tree in the forest we run the algorithm from Lemma 10 to find an [a, b]-HAM
labeling that satisfies all vertices except possibly the root. If any of these tree derivations fail, G cannot be
[a, b]-HAM — the failure of a tree derivation gives a set of vertices that cannot be mutually satisfied under
any labeling, since there can’t be any more edges into this set.

If none of these tree derivations fail, we have a labeling of all dangerous edges that satisfies all vertices
not involved in any cycle. Call a vertex good if it’s involved in at least one cycle. The next step of our
argument is to show that, no matter what labeling we choose for the dangerous edges, there is always an
assignment to the remaining edges that visits each good vertex between a and (d− 1)a ≤ b times, showing
that G is necessarily [a, b]-HAM unless a tree derivation fails.

Existence of a labelling, given that tree derivations succeed. We now give a procedure which finds
a labelling of the remainder of the graph once all tree derivations have succeeded; we stress that we don’t
actually run this procedure in our algorithm, it is an analysis tool to demonstrate the existence of a labelling.
The procedure is as follows:
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Figure 6: The algorithm performs all tree derivations, then labels disjoint cycles, then merges paths into
those cycles, and finally labels all remaining edges with 2.

• Find an arbitrary cycle in the graph, and label all of its edges with a. Mark the vertices involved in that
cycle happy .

• While there remains a cycle involving only unhappy vertices, repeat the above step with that cycle.
• Now, suppose there still exists an unhappy good vertex. Since good vertices are involved in cycles, there
must exist a path that starts and ends in happy vertices but otherwise contains only unhappy good vertices.
(Here, we’re allowing that “path” to potentially start and end at the same happy vertex — this is a slight
abuse of terminology.) Find such a path. If a is even, label all edges in the path with a. Otherwise, give
the edges in the path alternating labels of a+ 1 and a− 1. Mark all vertices along the path happy.

• Repeat the above step until all good vertices are happy. Then, label all unlabeled edges of the graph with
2.
Now we analyze the procedure. First, note that all edges are assigned nonzero weight, so this construction

is connected1. Labeling a full cycle with a’s increases every vertex label sum by either 0 or 2a, and all other
labels used in this construction are even values, so this labeling gives even sums into every vertex. So, the
only point to argue is that every vertex is given sum between 2a and 2b. This holds for the non-good vertices
by virtue of the tree derivations succeeding. Now, note that for each good vertex, at some point we label
two of its incident edges either a and a or a+ 1 and a− 1. In either case, this ensures that they have total
weight at least 2a. By Lemma 9, we can decrease all labels assigned while performing tree derivations to be
at most 2a. Thus, the sum of the labels incident to any good vertex is at most

2a+ (d− 2)2a = (d− 1)2a ≤ 2b.

The final point to note in this section is the following, covering the a = 1 case:

Lemma 12. Every connected graph of maximum degree d is [1, d]-HAM

Proof. Label all edges 2. This visits each vertex at least once, and at most d times.

Together, Lemma 11 and Lemma 12 give our easiness results. Note that we have easiness for [a, b]-HAM
whenever b

a ≥ d− 1, unless a = 1, in which case we need b
a ≥ d. The first thing we will observe in the next

section is that [1, d− 1]-HAM is in fact NP-hard, so this distinction is necessary.

1This is the place where the argument fails for a = 1. In that case, the edges assigned a− 1 would be given zero weight, and
so we wouldn’t ensure connectivity.
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3.2 Hardness

Lemma 13. [1, d− 1]-HAM is NP-hard in graphs of maximum degree d.

Proof. When d is odd, this follows by our hardness results in Lemma 8 — a d-regular graph is in particular
a graph of maximum degree d. When d is even, we can use the exact same construction as in the proof of
that lemma, but just use 3-regular depletors instead of d-regular depletors, since we’re no longer concerned
with regularity.

When a > 1, though, we will show hardness for much larger values of b than are hard in d-regular graphs.
Proving this claim will require a new depletor construction, which we call a chain depletor , since it’s
composed of a long chain of subunits:

Lemma 14. Let a, b be integers with 1 ≤ a ≤ b < a(d − 1). For any integer 2k ∈ [2, 2a], there exists a
gadget of maximum degree d and with a single attachment edge, which can be part of an [a, b]-HAM cycle if
the attachment edge is labeled 2k, but cannot be satisfied if the attachment edge is labeled < 2k.

Proof. Consider the gadget shown in Figure 7 — a 3-edge path on two intermediate vertices, with depletors
of total depletion D attached to the second intermediate vertex.

Figure 7: A “chainlink” gadget, forcing y ≤ x+ (2b− 2a−D)

Gadgets of this form will serve as the links in the chain. Let x be the label leaving the first intermediate
vertex, y be the label leaving the second intermediate vertex, and m be the label on the edge between the
two vertices. In order to satisfy the visit counts of the first vertex, we must have x+m ≥ 2a, and in order
to satisfy the visit counts of the second vertex we must have y + m + D ≤ 2b. Adding these constraints
together, we find that if y > x+ (2b− 2a−D), there is no setting of m that satisfies both of them. On the
other hand, if x ∈ [2, 2a− 2], then setting m = 2a− x and y = x+ (2b− 2a−D) not only satisfies all visit
count constraints, but also preserves connectivity so long as y ≥ 2. So, this gadget forces its “outgoing”
edge to have label at least (2b−2a−D) more than its “incoming” edge, and is satisfied by an outgoing label
exactly that large as long as its incoming edge had label between 2 and 2a− 2.

Of course, in constructing this link gadget, we assumed we were able to deplete a vertex by D. So if we
want to use these gadgets for anything, we first need some sort of depletors to start with. Fortunately we
do have some depletors: using for instance the 3-regular depletor of Lemma 5 (or an edge with a triangle on
the end) gives 2 depletion, and gluing a single vertex along an edge gives 2a depletion. The overall goal of
the chain depletor construction is to get a single gadget with depletion in between 2 and 2a, since for our
reductions we will need to fine-tune the depletion exactly.

For our construction, we chain together multiple copies of the link gadget, identifying the outgoing edge
of one with the incoming edge of the next, and finally ending in a single vertex, as shown in Figure 8:

Figure 8: A chain of link gadgets forcing x+
∑ℓ

i=1(2b− 2a−Di) ≥ y ≥ 2a.

Suppose the link gadgets are constructed with depletions D1, . . . , Dℓ, and let x and y be the labels
assigned to the attachment edge and final edge of the chain, respectively. By our analysis of the link gadget,
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this construction is unsatisfiable if the final edge has label y > x+
∑ℓ

i=1(2b− 2a−Di). We would therefore

like to choose the depletions Di such that
∑ℓ

i=1(2b − 2a −Di) = 2a − 2k, since then if the incoming edge
has too small a label x < 2k, this will make setting y ≥ 2a impossible, and so ensure that the vertex at the
end of the chain can’t be satisfied. We also want to make sure that the chain is satisfiable if the incoming
edge is labeled x = 2k; to guarantee that, it suffices by our analysis of the link gadgets to ensure that
2k+

∑j
i=1(2b−2a−Di) ∈ [2, 2a−2] for all j < ℓ, since then the construction is satisfied by greedily labeling

each edge, from attachment edge to the final edge, with the smallest allowable value.
We will now show that, except in the case where b is a multiple of a, which we will handle slightly

differently, it is always possible to construct such a sequence of Di. Let M =
⌊
b
a − 1

⌋
and L = 2b mod 2a,

so that 2b = 2a(M + 1) + L. We will use three kinds of links, with the following depletions:
• Dlarge = 2a(M + 1), created by gluing (M + 1) single edges. We have

(2b− 2a−Dlarge) = L− 2a.

• Dmedium = 2aM + 2, created by gluing M single edges and one 3-regular depletor. We have

(2b− 2a−Dmedium) = L− 2.

• Dsmall = 2aM , created by gluing M single edges. We have

(2b− 2a−Dsmall) = L.

To verify that these links are well defined, we must check that the maximum degree in the link is at most
d. Note that b

a < d− 1 by assumption. Thus, M ≤ d− 3, so the degree constraint allows us to glue M + 1
depletors to a vertex in our link gadget.

As long as b is not a multiple of a, we have that L is positive, L−2a is negative, and gcd(L,L−2, L−2a) =
2. By Bezout’s lemma, there must therefore exist non-negative integers w1, w2, w3 such that

w1(L− 2a) + w2(L− 2) + w3L = 2a− 2k.

So, we have constructed a multiset of links with the desired sum. Now we give an ordering of the links in
the multiset such that such that

2k +

j∑
i=1

(2b− 2a−Di) ∈ [2, 2a− 2]

for all j < ℓ. We construct the ordering greedily. Let S be the multiset of links we found above. While

2k +

j∑
i=1

(2b− 2a−Di) ̸= 2a,

we choose an element D∗ of S such that

(2b− 2a−D∗) + 2k +

j∑
i=1

(2b− 2a−Di) ∈ [2, 2a],

set Dj+1 = D∗, and remove D∗ from S. We now show that such a D∗ necessarily exists.
Suppose S is nonempty, and adding a large link brings the sum outside the desired interval. That is,

(L− 2a) + 2k +

j∑
i=1

(2b− 2a−Di) ≤ 0.

Then, since adding all remaining elements of S would bring the sum to 2a, we know that S cannot consist
only of large links. L and L− 2 are both non-negative, and we know

L+ 2k +

j∑
i=1

(2b− 2a−Di) ≤ 0 + 2a = 2a,
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so adding either a medium or a small link would be valid. If, on the other hand, adding a large link would
be valid, then either S contains a large link and we can add that, or S contains only small and medium
links, in which case since L and L− 2 are both non-negative we can add them in any order. Repeating this
argument on S until we reach a sum of 2a will give a greedy construction for the link sequence D∗.

We have established the lemma in the case that a ∤ b; we now deal with the case where b is a multiple of
a. Here, L = 0, so now none of L, L− 2, and L− 2a are positive. In this case, we will build our chain using
k − 1 copies of the Dmedium link, and feed the final edge into a 3-regular depletor as opposed to a single
vertex, as in Figure 9.

Figure 9: A chain of link gadgets forcing x− 2(k − 1) ≥ y ≥ 2.

If the attachment edge is labeled 2k, then the final edge can be labeled at least 2 and so this is satisfiable.
However if the attachment edge is labeled x < 2k, then the final edge can’t have positive label, and so the
final depletor is not visited.

Now that we have these fine-tunable depletors, we can glue them to the vertices of a graph to contribute
a specific number of artificial visits. However, in order to contribute enough visits in our reduction, it is
sometimes necessary to also deplete along the edges.

Lemma 15. Let a, b be constants with 1 ≤ a ≤ b < a(d− 1). For any integer 2k ∈ [2, 2a− 2], there exists a
gadget of maximum degree d and with two attachment edges with the following properties:
• The gadget can be satisfied if both attachment edges are labeled 2k.
• The gadget cannot be satisfied if an attachment edge is labeled less than 2k.
• The gadget can be both satisfied and connected if both attachment edges are labeled 2k + 1.
• The gadget cannot be connected if an attachment edge is labeled less than 2k + 1.

Proof. Consider the gadget shown in Figure 10: a path on 4 intermediate vertices, where the 2 middle
vertices each have 2b− 2a+ 2k worth of depletion glued to them — this can be constructed using the chain
depletors of Lemma 14. The middle edge can be assigned non-negative label only if both attachment edges

Figure 10: An edge gadget that is satisfiable if both inputs are 2k, satisfiable and connected if both inputs
are 2k + 1.

are labeled at least 2k, and can be assigned positive label only if both attachment edges are labeled at least
2k + 1.

11



We can think of this edge gadget as effectively providing 2k depletion to both sides. So, we can now give
a reduction to show our complete complexity characterization:

Theorem 2. When restricted to graphs of maximum degree d, [a, b]-HAM is NP-hard if either a = 1 and
b < d, or a > 1 and b

a < d− 1. Otherwise, [a, b]-HAM ∈ P.

Proof. The easiness results were established in Section 3.1, and the case of a = 1 in Lemma 13. So, it suffices
to show a reduction from [1, 1]-HAM in a 3-regular graph G to [a, b]-HAM in a max-degree d graph G′ when
1 < a ≤ b < (d− 1)a. By replacing the edges of G with the edge gadgets of Lemma 15, we can introduce up
to 3(2a− 1) depletion at each vertex, and by gluing up to (d− 3) additional chain depletors to each original
vertex, we can introduce up to 2a(d− 3) more. Since

3(2a− 1) + 2a(d− 3) ≥ 2b− 2,

and all of these depletors are fully fine-tunable, we can ensure exactly 2b−2 depletion on each original vertex
of G. This means that up to but no more than 2 of the edge gadgets incident to each original vertex can be
connected; thus, G′ is [a, b]-HAM if and only if G has a connected 2-factor.

4 Complexity characterization in directed graphs

In contrast to the case of undirected graphs, where we found that sufficiently large size of the [a, b] range
compared to degree made [a, b]-HAM easy, we will show that in directed graphs every case is hard, except
when the [a, b] range is very small (contains only a single element) and d = 3.

Just as in the directed case, we can think of the problem of [a, a]-HAM as finding labels. More precisely,
a directed graph is [a, a]-HAM if and only if there is a connected labeling of the edges such that every vertex
has in-label sum a and out-label sum a. As in the directed case the equivalence of these notions follows from
taking an Euler tour on the multigraph generated by viewing the labels as multiplicities for edges.

4.1 Easiness

First we give a simple algorithm for the easy cases of [a, b]-HAM in directed graphs.

Lemma 16. For a > 1, there exists a polynomial-time algorithm to decide [a, a]-HAM in directed graphs of
maximum degree 3.

Proof. Fix a directed graph of maximum degree 3. If any vertex has in-degree or out-degree 3 we immediately
deduce that the graph is not [a, a]-HAM; in the remainder of the proof we assume there are no vertices with
in-degree or out-degree 3.

Our algorithm for [a, a]-HAM begins as follows: while there exists a vertex v in the graph with only a
single unlabeled out-edge, or only a single unlabeled in-edge, assign that edge the unique label that satisfies
v. When that process terminates, each vertex must have either zero or two unlabeled in-edges, and either
zero or two unlabeled out-edges. So, if we look at the subgraph on unlabeled edges, and think of them as
undirected, we must have a union of even-length cycles. For each of those cycles, assign labels by alternating
between

⌊
a
2

⌋
and

⌈
a
2

⌉
. Now, check whether the assigned labels represent an [a, a]-HAM labeling; if so accept,

if not reject.
Since

⌊
a
2

⌋
+

⌈
a
2

⌉
= a, if our labeling violates a vertex visit constraint, that constraint must have been

violated during the forced initial phase. Similarly, since this process only labels edges with 0 during the
initial phase, if connectivity fails then no labeling can achieve connectivity.

4.2 Hardness

4.2.1 Max degree 3

We now show hardness of [a, a+ 1]-HAM. We will argue by induction. The following lemma constitutes the
inductive step of the argument.
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Lemma 17. Fix k ≥ 1. Suppose that [1, k]-HAM is NP-hard in 3-regular digraphs. Then, for any a ≥ 1,
[a, a+ k]-HAM is NP-hard in 3-regular digraphs.

Proof. Let G be a 3-regular digraph. We construct G′ by replacing each vertex of G with a vertex gadget
consisting of three hub vertices connected by bridge gadgets, as shown in Figure 11. We claim that G

Figure 11: A vertex gadget. Note that the specific structure of the bridge gadgets is just to preserve
3-regularity; what’s important is that they are acyclic. The labelings shown here are the two possible
[a, a+1]-HAM traversals — in a similar manner, any way to enter and leave the gadget at most k times can
be turned into an [a, a+ k]-HAM traversal.

is [1, k]-HAM if and only if G′ is [a, a + k]-HAM. First we show that if G′ is [a, a + k]-HAM then G must
be [1, k]-HAM. Each of the bridge gadgets must be visited at least a times, contributing at least a of the
in-label and out-label of each of the hub vertices. Thus, the edges entering and leaving the vertex gadget
can be traversed at most k+ a− a times. That is, each vertex gadget is visited at most k times and at least
once in an [a, a+ k]-HAM tour of G′. If this is possible, then G must be [1, k]-HAM.

For the other direction, if G is [1, k]-HAM we can create labelling of G′ proving that G′ is [a, a+ k]-HAM
as follows. First, copy the labels on the edges in G to the edges that enter and exit the vertex gadgets. Now,
label the edges internal to the vertex gadgets as follows: start by assigning all edges in the gadget label a.
Then, increase the edges in the first bridge gadget by one for every traversal of the first edge out of the
vertex in G. Then, increase the labels of edges in both the first and second bridge gadgets by one for each
traversal of the second edge leaving the vertex in G. This labeling visits each interval vertex at least a times
and at most a+ k times, as desired. Thus, G′ is [a, a+ k]-HAM.

Now, by applying this construction recursively, we can show our full hardness result:

Lemma 18. For any 1 ≤ a < b, [a, b]-HAM is NP-hard in 3-regular digraphs.

Proof. We will argue by induction on k that for all constants a ≥ 1, k ≥ 1, [a, a+ k]-HAM is NP-hard. Using
the classic theorem that [1, 1]-HAM is NP-hard in 3-regular digraphs, by Lemma 17 we deduce [a, a+1]-HAM
is NP-hard for all a ≥ 1; this will serve as the base case of our induction. Now, assume that [a, a+k]-HAM is
NP-hard for any constant a. In particular this means that [1, 1 + k] is NP-hard. Then, applying Lemma 17
we conclude that [a, a+ k + 1]-HAM is NP-hard for all a ≥ 1.

Lemma 16 and Lemma 18 together establish Theorem 3:

Theorem 3. In directed graphs of maximum degree 3, for 1 ≤ a ≤ b, [a, b]-HAM ∈ P if a = b > 1, and
NP-hard otherwise.

4.2.2 Max degree 4

The hardness for max degree 3 digraphs immediately gives that [a, b]-HAM is hard in max degree 4 digraphs
as long as b > a. In this section, we will take a different reduction approach to show that [a, a]-HAM is also
hard. We will use the following depletor-like construction, which we call an at-least-k gadget :

13



Lemma 19. For any k ∈ [1, a], there exists a gadget of max degree 4 with one incoming edge and one
outgoing edge that can be part of an [a, a]-HAM cycle as long as it’s traversed at least k times and at most
a times.

Proof. First, as a base case, consider the construction in Figure 12. It is clear that this is an at-least-1
gadget.

Figure 12: A gadget that can be traversed between 1 and a times.

Now, suppose we know how to build an at-least-(k − 1) gadget. Then, the construction in Figure 13 is
an at-least-k gadget.

Figure 13: A gadget that can be traversed between k and a times.

By using at-least-(a− 1) gadgets, we can give our desired reduction.

Lemma 20. For any a ≥ 1, [a, a]-HAM is NP-hard in directed graphs of maximum degree 4.

Proof. We reduce from [1, 1]-HAM in max degree 3 digraphs. Let G be a max degree 3 digraph. We will make
two copies, Vin and Vout, of the vertex set, and add the edge (uout, vin) for every edge (u, v) ∈ E(G). We will
also add the edges (vin, vout) for all v ∈ V (G). Finally, for every v ∈ V (G), we will add an at-least-(a − 1)
gadget from vout to vin. This construction is shown in Figure 14.

Figure 14: Reducing [1, 1]-HAM in max degree 3 digraphs to [a, a]-HAM in max degree 4 digraphs.
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The at-least-(a−1) gadget consumes all but 1 of vout’s available out-label, and all but 1 of vin’s available
in-label, so at most one other edge out of vout can be given nonzero label, and at most one other edge into
vin can be given nonzero label. Thus, in order to maintain connectivity between all v, the labeling in G′

must correspond to a Hamiltonian cycle in G.

This establishes Theorem 4:

Theorem 4. For all b ≥ a ≥ 1, [a, b]-HAM is NP-hard in directed graphs of maximum degree 4.

5 Conclusion and open questions

We now have full characterizations of which a and b make [a, b]-HAM NP-hard in d-regular graphs and
graphs of max degree d. One question of further potential interest would be to extend this analysis to low-
dimensional grid graphs (i.e. induced subgraphs of a square lattice). It’s known that [1, 1]-HAM is NP-hard
in 2-dimensional grid graphs [IPS82], but not clear whether one should expect [1, 2]-HAM to be hard as well,
for example. Another problem worth considering would be hardness of approximation — for instance, when
is it possible to distinguish between [a, a]-HAM graphs and graphs that aren’t even [a′, a′]-HAM, for some
a′ > a?
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