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Abstract

In a recent paper, Hunter, Milojević, Sudakov and Tomon consider the maximum number of edges
in an n-vertex graph containing no copy of the complete bipartite graph Ks,s and no induced copy of
a “pattern” graph H. They conjecture that, for s ≥ |V (H)|, this “induced extremal number” differs
by at most a constant factor from the standard extremal number of H. Towards this, we give bounds
on the induced extremal number in terms of degeneracy, which establish some non-trivial relationship
between the induced and standard extremal numbers in general. We also show that (as in the case of
standard extremal numbers) the induced extremal number is dominated by that of the 2-core of a single
connected component. Finally, we present some graphs arising from incidence geometry which may serve
as counterexamples to the conjecture.

1 Introduction

The extremal number of a graph H, denoted ex(n,H), is the maximum number of edges in an n-vertex
graph with no copy of H as a subgraph (we will sometimes refer to H as the “pattern” graph to be avoided).

It is known by a result of Erdős, Stone and Simonovits that ex(n,H) = n2
(
1− 1

χ(H)−1

)
+ o(n2) for all H,

where χ(H) is the chromatic number [ES46; ES66]. However, for bipartite graphs, this only allows us to
conclude ex(n,H) ≤ o(n2); understanding the extremal exponents of bipartite graphs is a major ongoing
area of research.

What if, instead of just finding H as a subgraph, we are interested in finding an induced copy of H? We
could define ex(n,H-ind) to be the maximum number of edges in an n-vertex graph with no induced copy of
H. However, this notion is rather uninteresting: unless H is itself complete, the complete graph Kn avoids
it as an induced subgraph, so ex(n,H-ind) =

(
n
2

)
. One might ask, though, whether this is in some sense

the only way to avoid induced copies of H without avoiding H altogether. That is, perhaps if a graph has
enough edges to force many copies of H, but contains no induced copy of H, then there must exist some
portion of the graph with very high density. Hunter, Milojević, Sudakov and Tomon propose the following
conjecture:

Conjecture 1.1 ([HMST25]). For any s ∈ N, and any connected bipartite H,

ex(n, {Ks,s, H-ind}) ≤ Os,H(ex(n,H)).

We always have ex(n, {Ks,s, H-ind}) ≥ ex(n, {Ks,s, H}), and if s ≥ |V (H)| then it is clear that we have
ex(n, {Ks,s, H}) = ex(n,H). So, this conjecture is equivalent to the claim that, for sufficiently large s,
the extremal numbers ex(n, {Ks,s, H-ind}) and ex(n,H) can differ by at most a constant factor (where the
constant depends on s and H — we will treat these as constants in our asymptotic notation for the rest of
the paper). As a heuristic for why such a conjecture might be reasonable, one could consider searching for
copies of H in the Erdős–Rényi random graph G(n, p): if p ≥ Ω(1), then there will be Θ(n2s) copies of Ks,s,
but if p ≤ o(1), then all but a subconstant fraction of the copies of H will be induced copies.

Hunter, Milojević, Sudakov and Tomon provide some evidence for their conjecture by directly reproduc-
ing many of the best known asymptotic upper bounds on standard extremal numbers. In particular, they
show ex(n, {Ks,s, C2k-ind}) ≤ O(n1+1/k) for C2k a length-2k cycle, ex(n, {Ks,s, Q8-ind}) ≤ O(n8/5) for Q8

the skeleton of a 3-dimensional cube, and ex(n, {Ks,s, H-ind}) ≤ O(n2−1/r) for any bipartite H with maxi-
mum degree r on one side — all of which match the corresponding bounds known for ex(n,H) [HMST25].
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Fox, Nenadov and Pham show that this last result can be extended to give ex(n, {Ks,s, H-ind}) ≤ O(n2−1/r)
whenever one side of H has at most r vertices that are complete to the other side, and all other vertices on
that side have degree at most r [FNP24]. Under the same restriction on H, plus the additional requirement
that H contain no copy of Kr,r, Axenovich and Zimmerman show that any bipartite graph avoiding H and
Ks,s can have only o(n2−1/r) edges [AZ25] — this provides an induced analogue of a result of Sudakov and
Tomon [ST20]. It is also known by a result of Scott, Seymour and Spirkl that ex(n, {Ks,s, T -ind}) ≤ O(n)
when T is a tree [SSS23]; Hunter, Milojević, Sudakov and Tomon show that the constant factor in that result
can be made polynomial in s [HMST25].

1.1 Main results

Hunter, Milojević, Sudakov and Tomon’s original statement of Conjecture 1.1 originally excluded the word
“connected” — however, we note in Section 2 that this original statement has a simple counterexample. The
graph H we give as a counterexample consists of three vertices, with two joined by a single edge. To rule out
such trivial counterexamples, one could choose either to require H to be connected, or simply require that
H have at least two edges. Our first result implies that both modifications to the conjecture are equivalent.

Proposition 2.3. For any s ∈ N, if H is the disjoint union of two subgraphs H1 and H2, then

ex(n, {Ks,s, H-ind}) ≤ O(ex(n, {Ks,s, H1-ind}) + ex(n, {Ks,s, H2-ind}) + n).

One other consequence of Proposition 2.3 is that, as long as ex(n, {Ks,s, H-ind}) ≥ Cn for some suffi-
ciently large constant C, this value remains unchanged up to constant factors when we remove all isolated
vertices from H. For the standard extremal number, it is easy to see that such a statement holds even if we
also remove all vertices of degree 1. In Section 3, we reproduce this fact in the induced setting.

Definition 1.2. For k ≥ 1, let k-core(G) be the largest induced subgraph of G with minimum degree at least
k.

Theorem 3.1. For any s ∈ N and any graph H, we have

ex(n, {Ks,s, H-ind}) ≤ O(ex(n, {Ks,s, 2-core(H)-ind}) + n).

Together with the results of [HMST25] on cycles, Proposition 2.3 and Theorem 3.1 imply that we have
ex(n, {Ks,s, H-ind}) ≤ O(n1+1/k) for any bipartite H with girth at least 2k, as long as every connected
component of H contains at most a single cycle.

In Section 4, with the goal of determining a relationship between ex(n,H) and ex(n, {Ks,s, H-ind}) in
general, we give an upper bound in terms of the degeneracy of H.

Definition 1.3. For k ≥ 1, a graph G is called k-degenerate if (k + 1)-core(G) is empty. We define the
degeneracy of G to be the minimum k such that G is k-degenerate.

Although there is no general method known for determining extremal numbers of bipartite graphs, it is
known that the degeneracy of the pattern graph always offers a somewhat reasonable proxy: for any bipartite
H of degeneracy r, we have Ω(n2−2/r) ≤ ex(n,H) ≤ O(n2−1/4r) [AKS03], and it is conjectured that the
upper bound can be strengthened to O(n2−1/r) [Erd97]. We show that degeneracy also controls the induced
extremal number, although we achieve weaker dependency on r than what is known for standard extremal
numbers:

Theorem 4.3. For any s ∈ N, and any bipartite H of degeneracy r, we have

ex(n, {Ks,s, H-ind}) ≤ O(n2−1/(20r4)).

The fact that degeneracy controls both the standard and induced extremal numbers immediately estab-
lishes some nontrivial relationship between them: if ex(n,H) = O(nα) and ex(n, {Ks,s, H-ind}) = Ω(nβ),
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then we can show unconditionally that β ≤ 2 − (2−α)4

320 (whereas Conjecture 1.1 would hold that β ≤ α).
It would be interesting to quantitatively improve this relationship by showing an upper bound of the form
ex(n, {Ks,s, H-ind}) ≤ O(n2−1/cr) for some constant c independent of r; we make some progress towards
this goal by finding copies of H which, while not necessary fully induced, avoid some particular subset of
H’s non-edges.

Finally, in Section 5, we discuss the possibility that Conjecture 1.1 could be false. We note several graphs
H where ex(n, {K2,2, H-ind) = Θ(n3/2), but such that we may plausibly have ex(n,H) ≤ o(n3/2). However,
due to the difficulty of determining standard extremal numbers, we are unable to prove such upper bounds.

1.2 Additional related work

The structure of graphs avoiding given induced subgraphs has been an active area of research for some
time. Much existing work is motivated by the Erdős–Hajnal Conjecture, which claims that, for any H, any
n-vertex graph with no induced copy of H must contain a clique or independent set of size polynomial in
n [EH89; Chu14]. Towards this conjecture, Fox and Sudakov have shown that any graph avoiding induced
copies of H must contain either a complete bipartite graph or independent set of polynomial size [FS09].

To our knowledge, Hunter, Milojević, Sudakov and Tomon are the first to systematically consider
ex(n, {Ks,s, H-ind}) for general bipartite H; however, the problem of forbidding one induced graph and one
non-induced graph has recieved prior attention. Kühn and Osthus have shown that ex(n, {Ks,s,H-ind}) ≤
O(n), where H is the family of all subdivisions of a given graph H [KO04]. Loh, Tait, Timmons and Zhou
showed that ex(n, {Kr,Ks,t-ind}) ≤ O(n2−1/s) for all r, s, t [LTTZ18], prompting further consideration of
ex(n, {F,H-ind}) for non-bipartite F [EGM19; Ill21a; Ill21b].

While our primary concern in this paper is the dependence on n, some existing work also asks about
the dependence of ex(n, {Ks,s, H-ind}) on s. The work of Fox, Nenadov and Pham [FNP24] deals with a
generalization of this question: as opposed to forbidding Ks,s, they consider host graphs which are required
to be (c, s)-sparse, meaning that every pair of vertex subsets A,B ⊆ V (G) with |A|, |B| ≥ s have e(A,B) ≤
(1− c)|A||B|. Note that for c ≤ 1/s2 this condition is equivalent to forbidding Ks,s, however for larger c this
is a more restrictive condition — Fox, Nenadov and Pham develop techniques to attain improved dependence
on s for large c, and demonstrate that in some cases these methods also interpolate to a good dependence
on s when c is small.

2 Reducing to a single connected component

We begin by noting our counterexample to the original statement of Conjecture 1.1, which did not require
H to be connected.

Example 2.1. Let H be the graph consisting of two vertices connected by an edge, and a third isolated
vertex. Note that

ex(n,H) =

{
1 if n = 2

0 otherwise,

since a subgraph isomorphic to H just consists of a single edge plus some third vertex. However, in the star
graph K1,n−1, any three vertices induce either an independent set or a path, depending on whether one of the
three vertices is the center of the star. Since K1,n−1 contains no cycles, we have exhibited a graph on n− 1
edges with no copy of K2,2 and no induced copy of H, giving ex(n, {K2,2, H-ind}) ≥ n− 1 ≥ ω(ex(n,H)).

This appears more like an annoying edge case than a serious issue with the spirit of the conjecture, so
it seems appropriate to exclude it by requiring H to be connected. But an alternative way to modify the
conjecture would be to simply exclude this one particular counterexample — that is, to allow disconnected
H, but specially disregard the case where H consists only of a single edge and some number of isolated
vertices.
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Conjecture 2.2. For any s ∈ N, and any bipartite H with at least two edges,

ex(n, {Ks,s, H-ind}) ≤ O(ex(n,H)).

Since the only connected graph with a single edge is K1,1, it is clear that Conjecture 2.2 implies Conjec-
ture 1.1. Our next observation will show that the reverse implication also holds, so that these two versions
of the conjecture are equivalent.

Proposition 2.3. For any s ∈ N, if H is the disjoint union of two subgraphs H1 and H2, then

ex(n, {Ks,s, H-ind}) ≤ O(ex(n, {Ks,s, H1-ind}) + ex(n, {Ks,s, H2-ind}) + n).

Proof. The Kővári–Sós–Turán Theorem gives that ex(n,Ks,s) ≤ O(n2−1/s), which means in particular that
any sufficiently large graph with constant edge density must contain a copy of Ks,s. Let N be such that, for

any N ′ ≥ N , any N ′-vertex graph with at least N ′2

|V (H))|2 edges must contain Ks,s as a subgraph. We will show

that, for any n, any n-vertex graph G with at least ex(n, {Ks,s, H1-ind})+ex(n, {Ks,s, H2-ind})+N |V (H)|n
edges must contain either an induced copy of H = H1 ⊔H2, or a copy of Ks,s.

The proof follows from a simple supersaturation argument. We claim that, if G contains no Ks,s, then
it must contain N induced copies of H1 and N induced copies of H2, all of which are vertex-disjoint.
This can be shown greedily: suppose we have already found fewer than disjoint N copies of H1 and
N copies of H2, and consider the subgraph of G induced by all vertices not included in any of those
copies. That subgraph contains at least |E(G)| − N |V (H1)|n − N |V (H2)|n = |E(G)| − N |V (H)|n ≥
ex(n, {Ks,s, H1-ind}) + ex(n, {Ks,s, H2-ind}) edges, and thus we can find another disjoint induced copy
of whichever of H1 or H2 we desire.

Now, suppose for contradiction that G contains no induced copy of H. This means that each of those
copies of H1 must have an edge to each of those copies of H2, since otherwise the pair would induce a copy
of H. Thus, the subgraph induced by all N disjoint copies of H1 and H2 together — which is a graph on
N |V (H)| vertices — contains at least N2 edges. By our choice of N , this guarantees that the graph contains
a copy of Ks,s.

Corollary 2.4. Conjecture 1.1 ⇐⇒ Conjecture 2.2.

Proof. The Conjecture 2.2 =⇒ Conjecture 1.1 direction is trivial, as the only connected graph with a
single edge is K1,1, in which case we have ex(n,K1,1) = ex(n, {Ks,s,K1,1-ind}) = 0. To show the reverse
direction, we assume Conjecture 1.1, and demonstrate Conjecture 2.2 by contradiction. Fix s ∈ N, and let
H be a bipartite graph with at least two edges such that ex(n, {Ks,s, H-ind}) ≥ ω(ex(n,H)) — in fact, take
H to have the minimum possible number of vertices among all such graphs. H cannot be connected, since
otherwise Conjecture 1.1 would apply. So, we can split H into two disconnected components H = H1 ⊔H2.
By Proposition 2.3, we have ex(n, {Ks,s, H1-ind}) + ex(n, {Ks,s, H2-ind}) + O(n) ≥ ω(ex(n,H)). Since H
has at least two edges, ex(n,H) ≥ Ω(n), so either ex(n, {Ks,s, H1-ind}) ≥ ω(ex(n,H)) ≥ ω(ex(n,H1)) or
ex(n, {Ks,s, H2-ind}) ≥ ω(ex(n,H)) ≥ ω(ex(n,H2)) — but either of these would contradict minimality of
H.

So, even if we care about the disconnected case, it suffices to consider the question only for connected
H. In the next section, we will show that it also suffices to consider the question only for H of minimum
degree at least two.

3 Reducing to the 2-core

It is known that Conjecture 1.1 holds when H is restricted to be a tree — i.e., ex(n, {Ks,s, H-ind}) ≤
O(ex(n,H)) ≤ O(n) whenever H is a tree [SSS23; HMST25]. For the standard extremal number, it is easy
to show that degree-one vertices simply do not affect the extremal number: not only is ex(n, T ) ≤ O(n) for
all trees T , but more generally attaching a tree to a single vertex of any graph H (not necessarily a tree)
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can change H’s extremal number by at most an additive O(n). In this section, we will show how to recover
a statement of this form in the induced setting, too.

Theorem 3.1. For any s ∈ N and any graph H, we have

ex(n, {Ks,s, H-ind}) ≤ O(ex(n, {Ks,s, 2-core(H)-ind}) + n).

The first step in the proof is a standard regularization argument, originally due to Erdős and Simonovits.

Lemma 3.2 ([ES66]; see also [FS13]). For any α ∈ [0, 1], and any N -vertex graph G with at least N1+α

edges, there exists an induced subgraph G′ ⊆ G with n ≥ N
α−α2

1+α vertices and at least 2
5n

1+α edges, such that

the maximum degree in G′ is at most a 20 · 21/α2

factor larger than the minimum degree in G′.

The statement in [ES66] does not mention that G′ can be taken to be induced, but as noted in [AZ25]
this is immediate from the proof.

Lemma 3.2 will allow us to show the key technical tool in our proof of Theorem 3.1: a supersaturation
result allowing us to find many induced copies of a subgraph that all share only one specified vertex.

Lemma 3.3. Fix any s, t ∈ N, any graph H containing at least one cycle, and any v ∈ V (H). There exists
some constant C independent of N such that for any N -vertex Ks,s-free graph G on C · ex(N, {Ks,s, H-ind})
edges, there exist t induced copies of H in G such that any pair of copies overlap on exactly one vertex, and
that vertex is the image of v for both copies.

Proof. Note that any graph containing a cycle must have extremal number at least N1+α for some constant
α, since ex(N,C2k) ≥ N1+1/2k (this follows from considering a random host graph) [FS13]. So, Lemma 3.2
implies that, for any C ′, if C is chosen sufficiently large andG is anN -vertex graph on C ·ex(N, {Ks,s, H-ind})
vertices, then we can pass to a subgraph G′ ⊆ G with n vertices and at least C ′ · (ex(n, {Ks,s, H-ind}))
edges, such that G has maximum degree at most ∆·E(G′)

n and minimum degree at least E(G′)
∆n , for a constant

∆ = 20 ·21/α2

independent of C ′. Now, for some k to be determined later, consider the following randomized
procedure:

i) Choose a uniform random n
k vertices R ⊆ V (G′).

ii) Choose a uniform random vertex u ∈ R.

iii) Declare the procedure to have succeeded if there exists an induced embedding π of H in R such that
π(v) = u.

We claim that as long as N (and therefore n) is sufficiently large, this procedure has a reasonably high
success probability. The first necessary observation is that, with high probability, the graph remains nearly
regular upon subsampling to R.

Claim 3.4. With probability at least 1−2−poly(n), every vertex in R has at least |E(G′)|
2k∆n and at most 2∆·|E(G′)|

kn
neighbors in R.

Proof. For any specific vertex x ∈ V (G′), consider the probability that x has fewer than |E(G′)|
2k∆n neighbors

in R. We know that x has degree at least |E(G′)|
∆n , so this probability is at most the chance that fewer

than a 1
2k fraction of x’s neighbors are chosen to belong to R. Since R is a uniform random 1/k-fraction

of all vertices, a Chernoff bound guarantees that this probability is exponentially small in the size of x’s

neighborhood [AS16], which is at least |E(G′)|
∆n ≥ nα

∆ = poly(n). Union bounding over all x ∈ V (G′), this

means that the probability that any of them have fewer than |E(G′)|
2k∆n neighbors in R is exponentially small

(i.e., 2−poly(n)). The upper bound on neighborhood size is identical.

We then observe that, so long as R remains nearly regular, we can find induced copies of H within R
making use of a substantial fraction of the vertices.
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Claim 3.5. If the subgraph induced by R has |E(R)| ≥ 2 ·ex(n, {Ks,s, H-ind}), and maximum degree at most

a 4∆2 factor larger than minimum degree, then for at least |V (R)|
8∆2 vertices u ∈ R, there exists an induced

embedding π of H in R such that π(v) = u.

Proof. Suppose there are fewer than |V (R)|
8∆2 vertices of R that serve as the image of v under some embedding

of H. Since the graph induced by R has maximum degree at most 4∆2·|E(R)|
|V (R)| , the subgraph induced by all ver-

tices of R other than those contains at least |E(R)| −
(

|V (R)|
8∆2

)(
4∆2·|E(R)|

|V (R)|

)
= |E(R)|

2 ≥ ex(n, {Ks,s, H-ind})
edges. So, it must contain an induced copy of H, which must have some vertex corresponding to v, which is
a contradiction since we have removed all possible images.

As long as C ′ ≥ 2k∆, Claim 3.4 and Claim 3.5 together guarantee that our random process has success
probability at least 1

10∆2 for sufficiently large n, since once we condition on an event with probability going

to 1 in n, a random vertex in R has at least a |V (R)|
8∆2 chance of leading to success.

But now, note that we could alternatively have performed the procedure in the following order:

i) Choose a uniform random vertex u ∈ V (G′).

ii) Choose a uniform random partition of all other vertices of G into k equal-sized color classes.

iii) Choose one of the colors uniformly at random to call R.

iv) Declare the procedure to have succeeded if there exists an induced embedding π of H in R ∪ {u} such
that π(v) = u.

Up to an additive difference of 1 in the number of vertices chosen in R, which affects the distribution
negligibly, this process gives the same distribution over R and u as the one originally specified, and so has
the same success probability of at least 1

10∆2 . By averaging, there exists some way to perform steps i and
ii such that the process still has success probability at least 1

10∆2 over step iii. This means that, for some

vertex u ∈ V (G′) and some partition into k colors, at least k
10∆2 of the color classes contain an induced

copy of H mapping v to u. Since each of these copies are (aside from u) of different vertex colors and hence
disjoint, choosing k = 10∆2t gives the desired statement.

Proof of Theorem 3.1. The statement is already known for trees [SSS23; HMST25], and so Proposition 2.3
immediately implies it for forests. Proposition 2.3 also allows us to remove any isolated vertices without
affecting the induced extremal number by more than an additive O(n). Thus, we need only consider the case
where H is a connected graph containing a cycle. Proceeding by induction on the number of edges of H,
it suffices to show for all such H that ex(n, {Ks,s, H

+-ind) ≤ O(ex(n, {Ks,s, H-ind)), where H+ is obtained
from H by adding a single vertex u, and a single edge (u, v) to some v ∈ V (H). That is, we will show that
adding a single degree-1 vertex to H cannot change its induced extremal number by more than a constant
multiplicative factor.

By Lemma 3.3, there exists some C such that any n-vertex graph with at least C · ex(n, {Ks,s, H-ind})
edges must contain s copies of H, any pair of which overlap exactly on the vertex corresponding to v. Let G
be a graph with at least 2C ·ex(n, {Ks,s, H-ind})+2 (s(|V (H)| − 1)s + s(|V (H)| − 1))n edges. By repeatedly
removing vertices with degree less than half the average, we can find an induced subgraph G′ ⊆ G with mini-
mum degree at least C

n ex(n, {Ks,s, H-ind})+s(|V (H)|−1)s+s(|V (H)|−1). Now, by Lemma 3.3, we can find
induced copies H1, . . . ,Hs of H in G′ that all overlap only on π(v), where π(v) is the image of v in all copies.
By our bound on minimum degree, we know that π(v) has degree at least s(|V (H)|−1)s+(|V (H)|−1), and
hence has at least s(|V (H)| − 1)s neighbors u1, . . . , u(s(|V (H)|−1)s) not contained in any of our identified Hi.

If G′ contains no induced copy of H+, then for every i, j, there must be an edge between ui and some
vertex of Hj \{π(v)}; choose an arbitrary such edge for each i, j. There are only (|V (H)|−1)s ways to choose
one element of Hj \ {π(v)} for each j, so by the pigeonhole principle there must exist a set of s many ui’s
for which we have chosen the exact same s-tuple of neighbors. These vertices and that s-tuple of neighbors
form a copy of Ks,s.
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Corollary 3.6. If H is any bipartite graph of girth at least 2k such that each connected component contains
at most a single cycle, then for any s we have ex(n, {Ks,s, H}) ≤ O(n1+1/k).

Proof. Hunter, Milojević, Sudakov and Tomon have shown that that ex(n, {Ks,s, C2ℓ) ≤ O(n1+1/ℓ) for all
ℓ [HMST25]. By Theorem 3.1, this gives that ex(n, {Ks,s, F ) ≤ O(n1+1/k) for any F whose 2-core is C2ℓ,
we have ℓ ≥ k – in other words, any bipartite graph of girth at least 2k containing only a single cycle.
Then, by Proposition 2.3, the disjoint union H of any constant number of such graphs must also have
ex(n, {Ks,s, H}) ≤ O(n1+1/k).

4 Control by degeneracy

The results of Section 3 give us a new class of graphs where we have upper bounds on induced extremal num-
bers matching those for standard extremal numbers. However, we still have no relationship between induced
and standard extremal numbers in general. Short of a proof of Conjecture 1.1, it would be useful to at least
rule out that ex(n, {Ks,s, H-ind}) can be arbitrarily large in terms of ex(n,H). That is, we would like to show
that for every ε there exists a δ such that, for all H, if ex(n,H) ≤ n2−ε, then ex(n, {Ks,s, H-ind}) ≤ n2−δ.
In this section, we will obtain such a result.

The relevant fact is that, while we know no general way of computing extremal numbers, the degeneracy
of H offers a reasonable approximation, giving both lower and upper bounds. Specifically, we know that,
for some constants c > k, for any r and any bipartite H of degeneracy r, we have Ω(n1−1/kr) ≤ ex(n,H) ≤
O(n1−1/cr). (The current best known values of c and k are 1/2 and 4, respectively, although it is conjectured
that these can be improved [AKS03; Erd97].) An upper bound on induced extremal numbers in terms of
degeneracy would therefore allow us to constrain the induced extremal number of a graph in terms only of
its non-induced extremal number. In Section 4.1, we will show a bound of the form ex(n, {Ks,s, H-ind}) ≤
O(n2−1/crc), which will establish some such relationship. To strengthen that relationship, it would be
interesting to show a bound of the form ex(n, {Ks,s, H-ind}) ≤ O(n2−1/cr); in Section 4.2 we discuss partial
progress towards such a stronger quantitative bound.

4.1 Bounding induced extremal numbers in terms of degeneracy

As in the argument for standard extremal numbers, our upper bound relies on the technique of dependent
random choice. In this section, we will be able to use directly the following standard result, whereas in the
next section we will have to unfold its proof to obtain some stronger guarantees:

Lemma 4.1 ([AKS03], [FS11]). For any r, t ≥ 2, and any n-vertex graph G with at least n2−1/(t3r) edges,
there exist nonempty subsets U1, U2 ⊆ V (G) such that every r-tuple of (not necessarily distinct) vertices in
U1 has at least n1−1.8/t common neighbors in U2, and likewise every r-tuple of vertices in U2 has at least
n1−1.8/t common neighbors in U1.

We will also make use of the fact that, in a Ks,s-free graph, at most a constant number of vertices are
neighbors with a constant fraction of any sufficiently large vertex set.

Lemma 4.2. For any ε > 0, any Ks,s-free graph G, and any vertex subset S ⊆ V (G) with |S| ≥ 2s
ε , there

exist at most
(
2s
ε

)s
vertices v ∈ V (G) such that |N(v) ∩ S| ≥ ε|S|.

Proof. Suppose there exist x =
(
2s
ε

)s
vertices {v1, . . . , vx} ⊆ V (G) such that |N(vi) ∩ S| ≥ ε|S|. Taking S

on one side, and these vertices {v1, . . . , vx} \ S on the other, we can define a bipartite subgraph with part

sizes at most |S| and x, and at least x · ε|S| −
(|S|

2

)
≥ 2sx1−1/s|S| −

(
2s
ε

)2 ≥ s1/sx1−1/s|S|+ sx edges. The
asymmetric version of the Kővári–Sós–Turán theorem guarantees that any bipartite graph with part sizes ℓ
and r, and at least s1/sr1−1/sℓ+ sr edges, must contain a copy of Ks,s [KST54; Hyl58]. So, we have found
a Ks,s in G, which is contradiction.

In order to find an induced embedding, we will first apply Lemma 4.1, then use Lemma 4.2 to show that
an appropriately-chosen random embedding of our pattern graph H in the resulting pair of subsets will be
an induced copy with high probability.
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Theorem 4.3. For any s ∈ N, and any bipartite H of degeneracy r, we have

ex(n, {Ks,s, H-ind}) ≤ O(n2−1/(20r4)).

Proof. Let H be an r-degenerate graph, and let G be a Ks,s-free n-vertex graph with at least n2−1/(20r4)

edges. Applying Lemma 4.1 with t = 2.71r, we obtain two vertex subsets U1, U2 ⊆ V (G) such that every
r-tuple in one subset has at least n1−1/1.51r common neighbors in the other.

Let v1, . . . , v|V (H)| be an ordering of the vertices of H such that, for all i, vertex vi has at most r neighbors
vj with j < i. Such an ordering is guaranteed to exist by the assumption that H is r-degenerate. We will
consider embedding the vertices of H one-at-a-time in that order, examining a large number of possible ways
to do so. Specifically, for any tuple of numbers w = (w1, . . . , w|V (H)|) ∈ [n1−1/1.51r]|V (H)|, we will define an
associated embedding πw : V (H) → V (G).

Fix an arbitrary ordering of the vertices in U1 and U2, respectively. To define the embedding of vi,
we will take the with “available” option in this ordering, ensuring edges exist to vi’s already-embedded
neighbors. That is, for each vi in the left (resp. right) part of H, let πw(vi) be the with vertex of the
common neighborhood

⋂
j<i : (vi,vj)∈E(H) N(πw(vj)) in the ordering of U1 (resp. U2). Since each vi has at

most r earlier neighbors in the embedding, and any r vertices in one Ui have at least n1−1/1.51r common
neighbors, the with vertex defined thus will always exist. The image of each πw is a homomorphic copy of
H: if (vi, vj) ∈ E(H), then (πw(vi), πw(vj)) ∈ E(G), since whichever of vi and vj is later in the ordering will
be chosen from the neighborhood of the other. We will show that when w is chosen uniformly at random
among all elements of [n1−1/1.51r]|V (H)|, the associated homomorphic copy of H has nonzero probability of
being an induced subgraph.

To do so, we will define a notion of neighborhoods having large overlap, and claim that this is unlikely to
occur. For any r-tuple u1, . . . , ur ∈ Uj , we define the set A = A(u1, . . . , ur) to be the first n1−1/1.51r vertices
of
⋂

i N(ui) in the ordering of the other part of U2−j . Note that our dependent random choice guarantees
|
⋂

i N(ui)| ≥ n1−1/1.51r, so A is well-defined. Now, for any other vertex v ̸∈ {u1, . . . , ur}, we say that v
electrocutes u1, . . . , ur if v is adjacent to a large fraction of A. That is, v electrocutes u1, . . . , ur if we have
|N(v) ∩ A| ≥ 1

100|V (H)|2 · n1−1/1.51r. Call a set T ⊆ V (G) slippery if some r-tuple (u1, . . . , ur) ∈ T r of the

vertices is electrocuted by another vertex v ∈ T , v ̸∈ {u1, . . . , ur}.

Claim 4.4. If n is sufficiently large, and w is chosen uniformly from [n1−1/1.51r]|V (H)|, the image Imπw
(V (H))

is slippery with probability at most 1
100|V (H)|2 .

Proof. Any w such that Imπw(V (H)) is slippery can be specified as follows:

i) Choose an index i, and indices j1, . . . , jr.

ii) Choose r vertices from V (G) to serve as πw(vj1), . . . , πw(vjr ).

iii) Choose the entries wℓ for ℓ ̸∈ {i, j1, . . . , jr}.
iv) Choose the entry wi, ensuring that πw(vi) electrocutes πw(vj1), . . . , πw(vjr ).

v) Set wj1 , . . . , wjr to be the unique values such that πw(vj1), . . . , πw(vjr ) correspond to the vertices chosen
on step ii.

By upper bounding the number of available choices at each step, we can obtain an upper bound on the
number of w such that Imπw(V (H)) is slippery.

i) There are at most |V (H)|r+1 ways to choose the indices

ii) There are at most nk ways to choose πw(vj1), . . . , πw(vjr ), where k is the number of distinct elements
appearing among j1, . . . , jr (note that the r-tuple of indices may contain repeated elements).

iii) There are at most (n1−1/1.51r)|V (H)|−k−1 ways to choose wℓ for ℓ ̸∈ {i, j1, . . . , jr}.
iv) By Lemma 4.2, so long as n1−1/1.51r ≥ 200s|V (H)|2, there are at most

(
200s|V (H)|2

)s
vertices that

electrocute πw(vj1), . . . , πw(vjr ).
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Overall, this means that the number of w such that Imπw(V (H)) is slippery is at most

|V (H)|r+1 · nk · (n1−1/1.51r)|V (H)|−k−1 ·
(
200s|V (H)|2

)s
= (n1−1/1.51r)(|V (H)|−k−1+ k

1−1/1.51r ) · (200s)s |V (H)|2s+r+1

≤ (n1−1/1.51r)|V (H)| · n(
1−.51r
1.51r ) · (200s)s |V (H)|2s+r+1.

Since we know any 1-degenerate H has extremal number O(n), we can assume r > 1, in which case(
1−.51r
1.51r

)
< 0. So, for any constant values of s, r, and |V (H)|, for n sufficiently large we have n−( 1−.51r

1.51r ) >
100 (200s)

s |V (H)|2s+r+3, which means that the number of w such that Imπw(V (H)) is slippery is at most
(n1−1/1.51r)|V (H)|

100|V (H)|2 . Since the total number of w is exactly (n1−1/1.51r)|V (H)|, the slippery tuples represent less

than a 1
100|V (H)|2 fraction.

We can now show that any particular non-edge of H is very unlikely to be present in πw(H).

Claim 4.5. Let vi, vj ∈ V (H) be any pair of vertices such that (vi, vj) ̸∈ E(H). If n is sufficiently large,
and w is chosen uniformly from [n1−1/1.51r]|V (H)|, then Prw[(πw(vi), πw(vj)) ∈ E(G)] ≤ 1

50|V (H)|2 .

Proof. We can assume without loss of generality that i < j. Let the tuple u1, . . . , ur contain the neighbors
of vi in H that appear earlier in the degeneracy ordering (repeat a vertex in the tuple if there are fewer
than r such distinct vertices). If we fix random values for w1, . . . , wj−1, then this will in particular fix the
embeddings πw(u1), . . . , πw(ur) for all of those neighbors, as well as the embedding πw(vi).

Let A = A(πw(u1), . . . , πw(ur)); choosing a random value for wj will correspond to fixing πw(vj)
to be a uniform random element of A. By definition, unless π(vi) electrocutes πw(u1), . . . , πw(ur), at
most a 1

100|V (H)|2 fraction of the vertices of A are adjacent to πw(vi), so conditional on π(vi) not elec-

trocuting πw(u1), . . . , πw(ur) we have Prwj [(πw(vi), πw(vj)) ∈ E(G)] ≤ 1
100|V (H)|2 . If π(vi) electrocutes

πw(u1), . . . , πw(ur), then w is slippery — so Claim 4.4 ensures that this occurs with probability at most
1

100|V (H)|2 . By union bound, this means Prw[(πw(vi), πw(vj)) ∈ E(G)] ≤ 1
100|V (H)|2 + 1

100|V (H)|2 = 1
50|V (H)|2 .

Finally, we note that πw is injective with high probability: for any i < j ≤ |V (H)|, we have Prw[πw(vi) =
πw(vj)] ≤ 1

n1−1/1.51 , because when wj is chosen, there are n
1−1/1.51 options, at most one of which corresponds

to πw(vi).

Now, the probability that Imπw
(V (H)) fails to be an induced copy of H is by union bound at most∑

i<j

Pr
w
[πw(vi) = πw(vj)]

+

 ∑
i<j : (vi,vj )̸∈E(H)

Pr[(πw(vi), πw(vj)) ∈ E(G)]


≤ |V (H)|2 · 1

n1−1/1.51
+ |V (H)|2 · 1

50|V (H)|2

≤ 1

25

for sufficiently large n. Since this probability is less than 1, we know in particular that G contains an induced
copy of H.

Corollary 4.6. For any constant α, if ex(n,H) ≤ O(nα), then ex(n, {Ks,s, H-ind}) ≤ O

(
n

(
2− (2−α)4

320

))
.

Proof. Let r be the degeneracy of H. Since Ω(n2−2/r) ≤ ex(n,H) ≤ O(nα), we must have r ≤ 2
2−α . The

result now follows from ex(n, {Ks,s, H-ind}) ≤ O(n2−1/(20r4)).
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4.2 Towards better dependence on degeneracy: forbidding specific edges

The induced extremal number upper bound obtained in Theorem 4.3 is of the form n2−1/poly(r), whereas
for standard extremal numbers we know a bound of the form n2−1/Θ(r). In the corresponding proof for
standard extremal numbers, it suffices to apply the dependent random choice of Lemma 4.1 with t = Θ(1),
guaranteeing that every r-tuple has a common neighborhood of size larger than some constant — however,
we took t much larger in order to guarantee common neighborhoods of close to linear size.

The reason this was necessary was because our proof was counting “out-of-order”. We described a process
of choosing an embedding that, when followed in degeneracy order, had exactly n1−1/1.51r choices at each
step. However, in order to bound the number of slippery embeddings, we first had to fix the embeddings
of the tuple that got electrocuted, and only then could count the number of choices for the vertex that
electrocuted them. If the electrocuter appeared before the electrocutees in the degeneracy order, then this
meant that we could not just embed in order, but instead had to fix the images of the electrocutees first,
allowing them n possibilities each as opposed to n1−1/1.51r.

One might wonder whether this technical issue can be overcome to show an upper bound of the form
n2−1/Θ(r). In this section, we make partial progress towards that goal, finding copies of the pattern subgraph
which, while not necessarily induced, avoid particular subsets of the pattern graph’s non-edges. Our first
such result recovers bounds of the form n2−1/Θ(r) when only a constant number of H’s non-edges must be
preserved.

Definition 4.7. For a graph H, and a subset F ⊆ (V (H)×V (H))\E(H) of “forbidden” edges, let H\(F -ind)
denote the family of graphs H ′ on V (H) such that

• (u, v) ∈ E(H) =⇒ (u, v) ∈ E(H ′), and

• (u, v) ∈ F =⇒ (u, v) ̸∈ E(H ′).

Proposition 4.8. For all H of degeneracy r, and F ⊆ (V (H) × V (H)) \ E(H) with |F | = f , we have
ex(n, {Ks,s, H \ (F -ind)}) ≤ O(n2−1/(12f+6r)).

Proof. Let V (F ) ⊆ V (H) be the set of vertices with an endpoint in F , noting that |V (F )| ≤ 2f . Consider
an n-vertex Ks,s-free graph G on n2−1/(12f+6r) vertices. Applying Lemma 4.1 with t = 1.81, we find vertex
subsets U1, U2 ⊆ V (G) such that any (r + 2f)-tuple of vertices in one subset has at least n.001 common
neighbors in the other. The subgraph of H induced by V (F ) has at most 2f vertices, and thus maximum
degree at most 2f — so, by the results of [HMST25] on induced extremal numbers of graphs with bounded
maximum degree, we can find an induced copy of that subgraph. Fix that subgraph as the embedding of
V (F ), order the remaining vertices of H in degeneracy order, and them embed one-at-a-time. Each vertex
to be embedded is neighbors with at most r + 2f already-embedded vertices, so there are at least n.001

candidates. As long as n is large enough that n.001 > |V (H)|, this ensures that there is always an option
that has not already been used, and so a copy of H \ (F -ind) can be found.

We also observe that it is possible to forbid all edges between vertices that are close to each other in
degeneracy order.

Theorem 4.9. Let H be an r-degenerate bipartite graph, and v1, . . . , v|V (H)| be an ordering of the vertices of
H such that, for all indices i, there are at most r indices j < i with (vi, vj) ∈ E(H). Then, for any q ∈ N, we
have ex(n, {Ks,s, H \ (F -ind)}) ≤ O(n2−1/(2000q2r)), where F = {(vi, vj) : (vi, vj) ̸∈ E(H) and |i− j| ≤ q}.

To prove Theorem 4.9, we will need to re-do the analysis of dependent random choice. We are interested
in obtaining something complementary to Lemma 4.2: we want our sets to be such that, for any r-tuple
of vertices in one set, although few vertices are neighbors with a very large fraction of the tuple’s common
neighborhood, every vertex is neighbors with at least a somewhat large fraction of the tuple’s common
neighborhood.

Lemma 4.10. For any r, t ≥ 2, any sufficiently large n, and any n-vertex graph G with at least n2−1/(9t2r)

edges, there exist nonempty subsets U1, U2 ⊆ V (G) such that both of the following conditions hold.
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• Any r-tuple of vertices (u1, . . . , ur) ∈ Ur
i has a large common neighborhood — that is, |

⋂
j N(uj) ∩

U3−i| ≥ n1/10.

• For any r-tuple of vertices (u1, . . . , ur) ∈ Ur
i , and any other vertex v ∈ Ui, a sizeable fraction of the

common neighborhood of (u1, . . . , ur) is neighbors with v — that is,
|
⋂

i N(ui)∩U3−i∩N(v)|
|
⋂

i N(ui)∩U3−i| ≥ n−1/t.

Proof. The proof is essentially the same as that of Lemma 4.1, but we include it in full for completeness.
First, partition V (G) into two parts L and R such that at least half of the edges cross the partition.
Then, randomly choose qL = 3t2r vertices ℓ1, . . . , ℓqL ∈ L with replacement, and consider their common
neighborhood A =

⋂
i N(ℓi)

⋂
R. For p = r + tr + 2t, we will define random variables X,Y, Z, where we let

X = |A|, let Y be the number of tuples (u1, . . . , up) ∈ Ap such that |
⋂

i N(ui) ∩ L| < n1/10, and let Z be

the number of tuples (u1, . . . , up, v) ∈ Ap+1 such that
|
⋂

i N(ui)∩L∩N(v)|
|
⋂

i N(ui)∩L| < n−1/t. To bound E[X], we note

that
∑

v∈R |N(v) ∩ L| ≥ n2−1/(9t2r)

2 , and use convexity:

E[X] =
∑
v∈R

(
|N(v) ∩ L|

|L|

)qL

≥ 1

nqL

∑
|N(v) ∩ L|qL ≥ 1

nqL
· n ·

(
n2−1/(9t2r)

2n

)qL

≥ n2/3

2qL
.

To calculate E[Y ], we note that any fixed such tuple will only be chosen if all qL chosen vertices lie in the
common neighborhood, so

E[Y ] =
∑

(u1,...,ur)∈Rr

|
⋂

i N(ui)∩L|≤n1/10

Pr[u1, . . . , up ∈ A] ≤ np ·
(
n1/10

n

)qL

< 1.

To bound E[Z], we note that Prℓ1,...,ℓqL [u1, . . . , up ∈ A and v ∈ A] ≤ Prℓ1,...,ℓqL [v ∈ A | u1, . . . , up ∈ A] =(
|
⋂

i N(ui)∩L∩N(v)|
|
⋂

i N(ui)∩L|

)qL
. So, bounding the number of tuples (u1, . . . , up, v) ∈ Rp+1 such that

|
⋂

i N(ui)∩L∩N(v)|
|
⋂

i N(ui)∩L| <

n−1/t by np+1, we obtain

E[Z] ≤ np+1 ·
(
n−1/t

)qL
< 1.

Since E[X−Y −Z] ≥ n2/3

2qL −2 > n2/3−.0001, there exists some choice of ℓ1, . . . , ℓqL such that X−Y −Z >

n2/3−.0001. Fix A according to this choice of ℓ, and let U1 be obtained from A by removing one ver-
tex from each tuple (u1, . . . , ur) ∈ Ar such that |

⋂
i N(ui) ∩ L| < n1/2, and one vertex from each tuple

(u1, . . . , ur, v) ∈ Ar+1 such that
|
⋂

i N(ui)∩L∩N(v)|
|
⋂

i N(ui)∩L| < n−1/(2r). We are guaranteed that |U1| ≥ n2/3−.0001.

Now, choose qR = t(r + 2) vertices r1, . . . , rqR ∈ U1, and consider their common neighborhood B =⋂
i N(ri) ∩ L. Let Y ′ be the number of tuples (u1, . . . , ur) ∈ Br such that |

⋂
i N(ui) ∩ U1| < n1/10, and let

Z ′ be the number of tuples (u1, . . . , ur, v) ∈ Br+1 such that
|
⋂

i N(ui)∩U1∩N(v)|
|
⋂

i N(ui)∩U1| < n−1/t. By the same logic

as above, we have

E[Y ′] ≤ nr ·
(

n1/10

n2/3−.0001

)qR

< 1/2,

E[Z ′] ≤ nr+1 ·
(
n−1/t

)qR
< 1/2.

So, by a union bound, there exists a choice of the r1, . . . , rqR such that Y ′ = Z ′ = 0. Set U2 to be the
corresponding set of B.

We claim U1, U2 satisfy the conditions of the statement. The fact that Y ′ = Z ′ = 0 immediately implies
the conditions for vertices in U2. Then, since r + qR = p, for any (u1, . . . , ur) ∈ U1 we have∣∣∣∣∣⋂

i

ui ∩ U2

∣∣∣∣∣ =
∣∣∣∣∣⋂

i

ui ∩

(⋂
i

N(ri) ∩ L

)∣∣∣∣∣ ≥ n1/10,
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and for any (u1, . . . , ur, v) ∈ Ur+1
1 , we have

|
⋂

i N(ui) ∩ U2 ∩N(v)|
|
⋂

i N(ui) ∩ U2|
=

|
⋂

i N(ui) ∩ (
⋂

i N(ri) ∩ L) ∩N(v)|
|
⋂

i N(ui) ∩ (
⋂

i N(ri) ∩ L) |
≥ n−1/t.

We can now run a proof strategy similar to that of Theorem 4.3, since Lemma 4.10 will let us show
that the number of available embedding options does not grow too much when we embed only a little bit
out-of-order.

Proof of Theorem 4.9. Let G be an n-vertex Ks,s-free graph with at least n2−1/(2000q2r) edges. We can apply
Lemma 4.10 with t = 11q to find two parts U1, U2 ⊆ G such that any r-tuple in one part has at least n1/10

common neighbors in the other part, and any additional vertex is neighbors with at least an n−1/11t fraction
of that common neighborhood.

As in the proof of Theorem 4.3, we now define a distribution on homomorphisms H → G, and show
that a random homomorphism from this distribution is likely to correspond to a copy of H as a subgraph
without any of the forbidden edges. Once again, we will do so by embedding vertices in degeneracy order,
choosing an embedding at each step uniformly from a prefix of the list of available candidates. However,
in this case instead of defining all of these prefixes in terms of fixed, arbitrary orderings of the left vertex
part U1 and the right vertex part U2, it will be useful to choose new, random orderings for each step of the
embedding. For any tuple of numbers w = (w1, . . . , w|V (H)|) ∈ [n1/10]|V (H)|, and any tuple of permutations

σ =
(
(σ

(1)
1 , σ

(2)
1 ), . . . , (σ

(1)
|V (H)|, σ

(2)
|V (H)|)

)
∈
(
SU1

× SU2

)|V (H)|
, we will define π

(σ)
w : V (H) → V (G). If vi

belongs to the left part of H, then π
(σ)
w (vi) is the with vertex of

⋂
j≤i : (vi,vj)∈E(H) N(vj) ∩ U1 to appear

in the ordering σ
(1)
i . Likewise, if vi belongs to the right part of H, then π

(σ)
w (vi) is the with vertex of⋂

j≤i : (vi,vj)∈E(H) N(vj) ∩ U1 to appear in the ordering σ
(2)
i .

We can make a slightly simpler definition of electrocution here, saying that v ∈ Ui electrocutes u1, . . . , ur ∈
Ui if |

⋂
i N(ui) ∩ Uj ∩N(v)| ≥ 1

100|V (H)|2 |
⋂

i N(ui) ∩ Uj |. We will also define a version of slipperiness that

requires indices to be close to each other: say that a tuple of vertices Y = (y1, . . . , y|Y |) ∈ G|Y | is slippery
if there exist (j1, . . . , jr) ∈ [|Y |]r and j∗ ∈ Y \ {j1, . . . , jr} such that yj∗ electrocutes (yj1 , . . . , yjr ), and also
maxi(ji)− j∗ ≤ q.

Claim 4.11. If n is sufficiently large, w is chosen uniformly from [n1/10]|V (H)|, and σ is chosen uniformly

from
(
SU1

× SU2

)|V (H)|
, then the image Im

π
(σ)
w

(V (H)) is slippery with probability at most 1
100|V (H)|2 .

Proof. By a union bound, it suffices to show for every particular j1 ≤ · · · ≤ jr and every j∗ with jr − j∗ ≤ q

that the probability of π
(σ)
w (vj∗) electrocuting

(
π
(σ)
w (vj1), . . . , π

(σ)
w (vjr )

)
is at most 1

100|V (H)|r+3 . Note

that if jr < j∗ this is easy: conditioning on any values of σ and w1, . . . , wj∗−1, wj∗+1, . . . , w|V (H)|, by

Lemma 4.2 at most (200s|V (H)|2)2s of the n1/10 possible choices for wj∗ result in π
(σ)
w (vj∗) electrocuting(

π
(σ)
w (vj1), . . . , π

(σ)
w (vjr )

)
. We would like to say something similar when jr is larger (but not much larger)

than j∗.

Fix some such j1, . . . , jr, j
∗, and also fix any values for w1, . . . , wj∗−1 and σ1, . . . , σj∗−1 — we claim that

the electrocution probability is low conditioned on any such choices. Note that the probability of electrocution
now depends only on the values of wj∗ , . . . , wjr and σj∗ , . . . , σjr , since indices later than jr have no effect on
the embeddings of earlier vertices. In order to count the number of embeddings that are slippery at these
indices, we will divide into two types, whose counts we will bound separately. For any i such that j∗ < i ≤ jr,

letting b ∈ {1, 2} be the part ofH to which vi belongs, we let Ai =
⋂

ℓ<i : (vℓ,vi)∈E(H)) and ℓ ̸=j∗ N(π
(σ)
w (vℓ))∩Ub

be the set of candidates for π
(σ)
w (vi) at the time of embedding when one ignores the potential requirement

to be neighbors with π
(σ)
w (vj∗).
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Case 1: For all i such that j∗ < i ≤ jr, at least n1/10 vertices of N(π
(σ)
w (vj∗)) appear among the first

100n1/10+1/11q vertices of Ai in the ordering σ
(b)
i .

In order to bound the probability of electrocution in this case, we can condition on any arbitrary value
of σ. Now, to bound the number possible choices of wj∗ , . . . , wjr , we can do the following:

i) For each i such that j∗ < i ≤ jr in order, choose a value for π
(σ)
w (vi) among the first 100n1/10+1/11q

vertices of Ai in ordering σ
(b)
i .

ii) Choose a value for π
(σ)
w (vj∗) among the vertices that electrocute π

(σ)
w (vj1), . . . , π

(σ)
w (vjr ).

Note that, since σ is fixed, fixing the embeddings π
(σ)
w (vj∗), . . . , π

(σ)
w (vjr ) will uniquely determine the

values wj∗ , . . . , wjr . In any valid embedding, for all i with j∗ < i ≤ jr, we will either choose vi from among

the first n1/10 vertices of Ai (if (vj∗ , vi) ̸∈ E(H)), or among the first n1/10 vertices of Ai ∩ N(π
(σ)
w (vj∗) (if

(vj∗ , vi) ∈ E(H)). So, the number of ways to perform the above process is indeed an upper bound on the
number of choices of wj∗ , . . . , wjr that lead to electrocution in this case. Since, by Lemma 4.2, there are at

most (200s|V (H)|2)s vertices that electrocute any fixed tuple π
(σ)
w (vj1), . . . , π

(σ)
w (vjr ), the number of ways to

perform the above process is at most(
100n1/10+1/11q

)jr−j∗

· (200s|V (H)|2)s ≤ n(jr−j∗)/10+(jr−j∗)/11q · (200s|V (H)|2)2s+q

≤
(
n1/10

)jr+1−j∗

· 1

200|V (H)|r+3

for sufficiently large n. So the probability of both belonging to case 1 and having π
(σ)
w (vj∗) electrocute

π
(σ)
w (vj1), . . . , π

(σ)
w (vjr ) is at most 1

200|V (H)|r+3 .

Case 2: For some i∗ with j∗ < i∗ ≤ jr, fewer than n1/10 vertices of N(π
(σ)
w (vj∗)) appear among the first

100n1/10+1/11q vertices of Ai∗ in the ordering σ
(b)
i .

We claim that, electrocution aside, case 2 is very unlikely. Fix any values for wj∗ , . . . , wi∗−1 and

σj∗ , . . . , σi∗−1. By our dependent random choice, we have guaranteed that |Ai∗ ∩N(π
(σ)
w (vj∗))| ≥ n−1/11q ·

|Ai∗ |. So, in expectation over σi∗ there will be at least 100n1/10 vertices of N(π
(σ)
w (vj∗)) among the first

100n1/10+1/11q vertices of Ai∗ . By a Chernoff bound, the probability of lying substantially below this expecta-

tion is extremely small. That is, the probability of having fewer than n1/10 vertices ofN(π
(σ)
w (vj∗)) among the

first 100n1/10+1/11q vertices of Ai∗ is at most the probability of fewer than n1/10 successes in 100n1/10+1/11q

flips of an n−1/11q-biased coin. This occurs with probability at most 2−2(99n1/10)2/(100n1/10+1/11q) ≤ o(2−n0.0001

)
[AS16]. So, union bounding over all possible i∗, for n sufficiently large the probability of lying in case 2 is
at most 1

200|V (H)|r+3 .

Since cases 1 and 2 are exhaustive, we have upper bounded the probability of π
(σ)
w (vj∗) electrocuting(

π
(σ)
w (vj1), . . . , π

(σ)
w (vjr )

)
by 1

200|V (H)|r+3 + 1
200|V (H)|r+3 = 1

100|V (H)|r+3 .

Once again, we can now say that forbidden edges are unlikely unless the embedding is slippery.

Claim 4.12. Let vi, vj ∈ V (H) be any pair of vertices such that (vi, vj) ̸∈ E(H), and |i − j| ≤ q. If n is

sufficiently large, w is chosen uniformly from [n1/10]|V (H)|, and σ is chosen uniformly from
(
SU1

×SU2

)|V (H)|
,

then Prw,σ[(π
(σ)
w (vi), π

(σ)
w (vj)) ∈ E(G)] ≤ 1

50|V (H)|2 .

Proof. Assume without loss of generality that i < j. Fix random values for w1, . . . , wj−1 and σ1, . . . , σj−1.

Now, choosing uniform random values for σj and wj will cause π
(σ)
w (vj) to be chosen as a uniform random

vertex of
⋂

ℓ<j : (vℓ,vj)∈E(H) N(vℓ)∩Ub, where b ∈ {1, 2} is the index of the part of H to which vj belongs. If
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the overall embedding is not slippery, then at most a 1
100|V (H)|2 fraction of this set belongs to N(π

(σ)
w (vi)).

So, by Claim 4.11 we have Prw,σ[(π
(σ)
w (vi), π

(σ)
w (vj)) ∈ E(G)] ≤ 1

100|V (H)|2 + 1
100|V (H)|2 = 1

50|V (H)|2 .

Once again, the probability of π
(σ)
w failing to be injective goes to 0 in n, so union bounding this along

with the probability of any forbidden edge existing gives overall probability strictly less than 1 for large n.
Thus, there exists some copy of H in G as a subgraph that avoids inducing any edge of F .

5 Possible connected counterexamples

In Section 4, we have shown an upper bound on ex(n, {Ks,s, H-ind}) in terms of ex(n,H), which it would
be interesting to improve by strengthening the quantitative bounds of Theorem 4.3. However, even the best
possible control by degeneracy one could hope for would not suffice to demonstrate Conjecture 1.1, because
it is known the degeneracy does not completely determine standard extremal numbers. One is left with the
question: is Conjecture 1.1 likely to be true? In this section, for the benefit of the unbelievers, we briefly
discuss a potential source of counterexamples.

The simplest setting to consider would be where s = 2. Recall that ex(n,K2,2) = Θ(n3/2), where the lower
bound is attained by the incidence graph of all points and lines over a finite projective plane PG(2, q) [Bro66].
These projective plane incidence graphs are highly structured; in addition to avoiding K2,2, they may avoid
many other interesting structures. A possible approach to disproving Conjecture 1.1 would be to find some
subgraph with extremal number o(n3/2) which is nonetheless avoided in induced form by some such family
of incidence graphs.

Indeed, one can find examples of pattern graphs H such that the point-line incidence graph of PG(2, q)
must always contains many copies of H, but where none of the copies are induced. Perhaps the simplest
example would be the the Heawood graph with one edge deleted. The Heawood graph, which we will denote
Hea, is the incidence graph of the Fano plane (i.e., all points and lines over PG(2, 2)) — let Hea− = Hea \e
be the Heawood graph with a single edge deleted (note that Hea is edge-transitive, so we need not specify
which edge is removed).

Figure 1: Hea−, the incidence graph of the Fano plane with a single edge deleted. Deleted edge shown
dashed.

Proposition 5.1. ex(n, {K2,2,Hea− -ind}) = Θ(n3/2).

Proof. A complete quadrangle is a set of four points, no three of which are colinear, and the 6 lines between
each pair — the diagonals of a complete quadrangle are the three additional intersection points of those
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lines. For any finite field Fq, we know the diagonals of a complete quadrangle in PG(2, q) will be colinear if
and only if q is a power of 2 [HP82].

Figure 2: A complete quadrangle, with a line between two of the three diagonal points. The dashed exten-
sion of that line indicates that it passes through the third diagonal if and only if the underlying field has
characteristic 2 (in which case the configuration is isomorphic to the Fano plane).

In particular, this means that Hea− cannot appear as an induced subgraph of the point-line incidence
graph of PG(2, 2a) for any a ∈ N: given 7 points and 6 lines corresponding to a complete quadrangle, a line
incident to two of the diagonals must also be incident to the third, thus inducing Hea. So incidence graphs
of PG(2, 2a) give a family of n-vertex graphs with Θ(n3/2) edges avoiding both K2,2 as a subgraph and Hea−

as an induced subgraph.

If we knew that ex(n,Hea−) < o(n3/2), then this would therefore be a counterexample to Conjecture 1.1.
It seems perhaps plausible that Hea− could have a small extremal number: it is a 2-degenerate graph of
girth 6, and appears as a subgraph (although not necessarily induced) of every complete point-line inci-
dence graph over a finite projective plane. The strongest lower bound we know on its extremal number
is ex(n,Hea−) ≥ Ω(n7/5), obtained by considering a random host graph. It would be quite interesting to
determine tight bounds on the extremal number of Hea−, and thus determine whether or not it represents
a counterexample to Conjecture 1.1. However this may be a difficult task: there are remarkably few graphs
for which the true Turán exponent is known, with the techniques involved typically quite specialized to the
particular graph in question [FS13].

Figure 3: Two graphs H where the bound ex(n, {K2,2, H-ind}) = Θ(n3/2) can be obtained from incidence
geometry theorems: the Pappus graph (left), and the Desargues graph (right), each with a single deleted edge
(denoted by a dashed line). Pappus’s theorem and Desargues’s theorem, respectively, ensure that neither
can appear as an induced subgraph of PG(2, q) for any q, since the dashed edge will always be present.

The Heawood graph is, of course, far from the only case of such a structure: there are many more
complicated theorems demonstrating that, in some particular incidence configuration, three points must
be colinear [Ric95; FP23]. Such theorems will allow us to find subgraphs which appear in all projective
plane incidence graphs, but can be avoided in induced form (see Figure 3 for two additional examples).
Conjecture 1.1 would hold that all such graphs have extremal number Ω(n3/2); evidence for or against
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that prediction could give intuition as to whether Conjecture 1.1 is likely to be true. As a point against the
prediction, we note that Conlon has conjectured that every 2-degenerate C4-free bipartite graph has extremal
number O(n3/2−δ) for some δ (this conjecture is cited as personal communication in [ST25]) — as all three
graphs mentioned in this section fit those criteria, at least one of Conlon’s conjecture and Conjecture 1.1
must be false.
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