
When to Give Up on a Parallel Implementation

Nathan S. Sheffield, Alek Westover

Abstract

In the Serial Parallel Decision Problem (SPDP), introduced by Kuszmaul and Westover [SPAA’24],
an algorithm receives a series of tasks online, and must choose for each between a serial implementation
and a parallelizable (but less efficient) implementation. Kuszmaul and Westover describe three decision
models: (1) Instantly-committing schedulers must decide on arrival, irrevocably, which implementa-
tion of the task to run. (2) Eventually-committing schedulers can delay their decision beyond a task’s
arrival time, but cannot revoke their decision once made. (3) Never-committing schedulers are always
free to abandon their progress on the task and start over using a different implementation. Kuszmaul
and Westover gave a simple instantly-committing scheduler whose total completion time is 3-competitive
with the offline optimal schedule, and proved two lower bounds: no eventually-committing scheduler
can have competitive ratio better than ϕ ≈ 1.618 in general, and no instantly-committing scheduler
can have competitive ratio better than 2 in general. They conjectured that the three decision models
should admit different competitive ratios, but left upper bounds below 3 in any model as an open problem.

In this paper, we show that the powers of instantly, eventually, and never committing schedulers are
distinct, at least in the “massively parallel regime”. The massively parallel regime of the SPDP is the
special case where the number of available processors is asymptotically larger than the number of tasks
to process, meaning that the work associated with running a task in serial is negligible compared to its
runtime. In this regime, we show (1) The optimal competitive ratio for instantly-committing schedulers
is 2, (2) The optimal competitive ratio for eventually-committing schedulers lies in [1.618, 1.678], (3) The
optimal competitive ratio for never-committing schedulers lies in [1.366, 1.500]. We additionally show
that our instantly-committing scheduler is also 2-competitive outside of the massively parallel regime,
giving proof-of-concept that results in the massively parallel regime can be translated to hold with fewer
processors.

1 Introduction

1.1 Background

Many computational tasks can be performed quickly in parallel over a large number of processors — but
such parallel implementations may be less work-efficient than a serial implementation on a single pro-
cessor, requiring substantially more total computation time across all machines. When several different
tasks must be completed in as little total time as possible, this trade-off between work and time can ne-
cessitate running different tasks in different modes: small tasks can be done in serial to save work, while
large tasks must be parallelized to prevent their serial runtimes from dominating the overall computation.

To formalize this problem, Kuszmaul and Westover introduced the Serial Parallel Decision Prob-
lem (SPDP) [KW24]. In their model, each task has exactly two possible implementations: a parallel
implementation which can be worked on by multiple machines at once (where the rate of progress on the
implementation is proportional to the number of processors assigned to it), and a serial implementation
which can only be worked on by a single processor at a time. If all tasks are available at time 0, it
is easy to efficiently determine the optimal strategy: all jobs with serial completion time smaller than
some threshold can be run in serial, and the larger tasks must be run in parallel. The model becomes
interesting when previously-unknown tasks are allowed to arrive at arbitrary times, and one wishes to
minimize the competitive ratio between the total completion time of an online algorithm compared to
the offline optimal completion time.

1



Kuszmaul and Westover define three distinct versions of this model, parameterized by the degree to
which the online scheduler is able to reverse its decisions.

a) An instantly-committing scheduler must choose an implementation for each task as soon as the
task arrives, and is not allowed to revisit this choice.

b) An eventually-committing scheduler may delay choosing an implementation, but must choose one
irrevocably before assigning its work to a processor.

c) A never-committing scheduler can, at any time, discard all as-yet completed work on an imple-
mentation and re-start the task with the other implementation.

The distinction between the eventually- and never-committing models is motivated by potential prac-
tical concerns: if a task involves mutating an input in memory, it may not be feasible to cancel an
implementation once it begins running. Westover and Kuszmaul present an instantly-committing sched-
uler achieving competitive ratio 3, and show competitive ratio lower bounds of 2 and ϕ ≈ 1.618 in the
instantly-committing and eventually-committing models, respectively. They conjecture that the abil-
ity to delay or cancel choices should allow for more competitive online algorithms, but leave open the
problem of finding better competitive ratio upper bounds than 3.

1.2 This Work

In this work, we consider Kuszmaul and Westover’s SPDP when the number of available processors is
much larger than the number of tasks, noting that all of their upper and lower bounds hold in this
parameter regime. This is a particularly simple setting, since the work associated to a serial implemen-
tation is now negligible compared to its completion time — running a task in serial means accepting
a lower bound on completion time, but requires essentially no work. We can think of this setting as
an unrelated-machines scheduling problem with an unlimited number of identical “slow” machines, and
a single unrelated “fast” machine, representing a massively parallel implementation of the task across
many processors — note that this could also describe scenarios with a literal fast machine, such as a
single piece of accelerated hardware.

Our main results are tight bounds on the competitive ratio of instantly-committing schedulers in this
regime, and separations between the strength of all 3 models. Our results are summarized in Table 1.

Model Lower Bound Upper Bound
Instantly-Committing Schedulers 2 [KW24] 2 *
Eventually-Committing Schedulers 1.618 [KW24] 1.678 *

Never-Committing Schedulers 1.366 * 1.5 *

Table 1: Main Results. * = this work.

In each case, the upper bound comes from a simple heuristic in which the algorithm compares its
projected completion time to its current estimate of the optimal completion time. More precisely, at
each time t, our scheduler computes an offline optimal strategy “opt(t)” on the truncation of the task
sequence to tasks that arrive before time t, and makes decisions based on the completion time of opt(t).

Our main technical contribution is the analysis of the schedulers. Working with opt(t) is challenging,
because the schedules opt(t) and opt(t′) can be quite different for t ̸= t′. For instantly-committing sched-
ulers we use an invariant-based approach to bound, at all times, the work taken by our scheduler in terms
of the minimum work and completion time among all schedulers. For eventually- and never-committing
schedulers this approach is no longer feasible: there is no well defined notion of the “work taken” by
our scheduler, because the scheduler may not have committed to a decision yet. Instead, these analyses
rely on choosing a couple of critical times to observe the state of our scheduler and opt(t), and then
establishing a dichotomy: either (1) “real fast tasks” (tasks that opt runs on the fast machine) arrive
quickly, in which case our scheduler prioritizes real fast tasks on the fast machine and will run most other
tasks on slow machines, or (2) real fast tasks arrive slowly, in which case our scheduler never falls too far
behind opt, despite making suboptimal use of the fast machine.

In addition to these results, we show that with some effort our instantly-committing scheduler can
be adapted to work for any number of processors, fully resolving the question of the optimal competitive

2



ratio of instantly-committing schedulers in the general SPDP, and giving a proof-of-concept that results
for a large number of processors can be adapted to hold when the work associated with serial tasks is
also a concern.

1.3 Related Work

There is a long line of work studying the phenomenon of work-inefficient parallel implementations in
multi-processor scheduling. Typically, the models of limited parallelism considered involve one of three
types of jobs:

a) Rigid jobs, which come with a number pi specifying a fixed number of processors the job must be
run on at each timestep of its execution.

b) Moldable jobs, where the scheduler may choose the (fixed) number of processors the job is run on,
and the amount of work scales depending on this choice according to some speedup curve.

c) Malleable jobs, which like moldable jobs have an associated speedup curve, but where the job may
be assigned to different numbers of processors at different timesteps (as opposed to the scheduler
choosing a fixed value at the start of the task’s runtime).

In each of these cases, there is interest in minimizing the total completion time (makespan) in
both the offline setting — where problems tend to be NP-hard, but may have approximation algo-
rithms [TWY92; MRT99; LT94; Tur+94a; Tur+94b] — and the online setting, where the goal is to
minimize competitive ratio [Gra69; DM07; BS83; HP08; GK10; YHZ09; YCZ18]. Kuszmaul and West-
over’s Serial Parallel Decision Problem is related to this line of work, but doesn’t quite fit into the usual
framework — in their model, instead of dealing with an arbitrary speedup curve, there is a single binary
decision between a completely serial and perfectly parallelizable implementation.

As noted, the massively-parallel regime of the SPDP considered in this paper can be naturally viewed
as a scheduling problem with an unlimited number of identical “slow” machines, and a single unrelated
“fast” machine. Standard scheduling problems in the unrelated machines model have also been well-
studied, in terms of both offline approximation algorithms and hardness results [HS76; LST90; SS02;
VHW14; Mol; PSM20; Gup+21; IL23; DLR23], and online algorithms [Awe+95; Asp+97; SS02; Car08;
AGM11; Gup+17; Gup+20; Zha+22]. We note, however, that since we treat “slow” machines as an
unbounded resource, and there is only a single fast machine available, most of the typical difficulties of
multi-processor scheduling problems do not arise. In particular, unlike a typical load-balancing problem
where NP-hardness follows from a standard set-partition reduction, the One-Fast-Many-Slow Decision
Problem (without dependencies) is easily solvable offline, simply by putting all tasks which finish below
a certain threshold on distinct slow machines.

1.4 Open Questions

We leave three main open questions as directions for future work.

Question 1.1. What are the optimal competitive ratios for eventually/never-committing schedulers?

In Appendix A we identify barriers, showing that improving on our eventually/never-committing
schedulers will require substantially different algorithms — but we suspect that such improvements may
be possible.

Question 1.2. Are randomized schedulers more powerful than deterministic schedulers?

In the main body of the paper we consider only deterministic schedulers; however, for many online
problems randomized algorithms can do substantially better than deterministic ones. In Appendix C we
give some lower bounds against randomized schedulers, but these bounds are weaker than those known
for deterministic schedulers.

Question 1.3. Is there a general transformation between schedulers for the massively parallel regime
(i.e. the One-Fast-Many-Slow Decision Problem) and the general SPDP?

The fundamental difficulty of the SPDP is deciding between implementations which take a lot of work,
and implementations which take a lot of time. This tradeoff is absolute in the massively parallel regime,
since the large number of processors means the amount of work associated with a serial implementation

3



is negligible, whereas in the general SPDP it is possible for all processors to be saturated with serial
implementations to run. Intuitively, one might expect that having work associated to the serial imple-
mentations only makes the problem easier, since it makes the tradeoff less dramatic — indeed, Kuszmaul
and Westover’s competitive ratio lower bounds become weaker when the number of processors is small.
So, one might hope that algorithms in the massively parallel regime can be generically translated to
limited-processor settings. Formalizing this connection is an interesting direction for future research.

2 Preliminaries

2.1 The One-Fast-Many-Slow Decision Problem

In this section we formally define the One-Fast-Many-Slow Decision Problem, where the goal is
to distribute work between a single fast machine and an unlimited number of slow machines. An
instance of the problem is a Task Arrival Process (TAP) T = (τ1, . . . , τn), where each task τi consists
of a tuple (σi, πi, ti) indicating runtime on a slow machine, runtime on the fast machine, and arrival time,
respectively, such that t1 ≤ · · · ≤ tn. A valid schedule associates at most one task to each machine at
each point in time1 such that no work is done on any task before its arrival time, each task runs on at
most 1 machine, and each task τi is either run for a total of σi time on some slow machine, or a total of
πi time on the fast machine. The completion time (also known as makespan) of the schedule is the
time when the last task is finished.

We will be interested in online algorithms for this problem. An online scheduler learns about each
task only at its arrival time, and at each time t must already have fixed the prefix of the schedule on
times less than t. We define three distinct models for how these online decisions are made:

a) For each task τ , an instantly-committing scheduler must fix at τ ’s arrival time the machine that
τ will run on.

b) An eventually-committing scheduler need not fix a machine for any task until that task begins
running.

c) A never-committing scheduler is an eventually-committing scheduler with the additional power to,
at any time, “cancel” a task from the schedule, erasing all work previously done on the task and
allowing it to be re-assigned to a new machine.

In each case, we are interested in minimizing the competitive ratio of an online scheduler, which
is the supremum over all TAPs of the ratio of the online scheduler’s completion time to the completion
time of an optimal scheduler on that TAP.

2.2 Connection to the SPDP

In Kuszmaul and Westover’s Serial Parallel Decision Problem, a scheduler must allocate work to p
equally-powerful processors, where each task is specified by the work of the serial implementation, the
work of the parallel implementation, and the runtime. The scheduler must choose whether to run each
task in serial or parallel, and then must assign the resulting work to the p processors, where parallel work
can run on multiple processors at once but serial work cannot.

We can define the massively parallel regime of this problem to be the limit as the number of
processors becomes large compared to the number of tasks. Letting n be the number of tasks, if n ≤ εp
then restricting the serial implementations to run on only the first n many processors, and the parallel
implementations to run on only the last p− n many processors, the completion time can increase by at
most a 1

1−ε
factor. This corresponds directly to the One-Fast-Many-Slow Decision Problem: we think

of each of these serial processors as a “slow machine”, noting that since we have as many as we have
tasks there are effectively an unlimited number. We think of the parallel processors collectively as a “fast
machine”, noting that we can assume without loss of generality that, at any point in time, all parallel
processors are running the same parallel implementation.

1In order for the notions like “amount of work performed on τi” to be well-defined, we must additionally mandate that a
schedule be measurable. Alternatively, one can assume that time is discretized into appropriately fine timesteps.

4



2.3 Notation

We now introduce our notation for describing and analyzing schedulers. For algorithm alg and TAP T ,
we let CT

alg be the completion time of alg on T . Let T t be the truncation of TAP T consisting of the

tasks τi with ti ≤ t. When T is clear from context we will write Ct
alg to denote CT t

alg , and we will write

Calg to denote C∞
alg = CT

alg. We will also use C̃alg to denote the completion time of the fast machine — that
is, the final time when the fast machine has work.

It will be useful to be able to talk about the optimal completion time of a prefix of the TAP. Define
the schedule opt(t) to be a schedule for T t with minimal completion time. Note that opt(t) is only
defined as an offline strategy, but that an online algorithm can compute it at time t, thus obtaining a
lower bound on Copt, which will be useful to inform the algorithm’s future decisions. For ease of notation,
we’ll often abbreviate Ct

opt(t) as Ct.

There may be many sets of decisions which result in the optimal completion time; as opposed to
letting opt(t) be an arbitrary such scheduler, it will be useful to fix a canonical one, which we will do by
letting opt(t) run as many tasks in serial as possible.

Scheduler 2.1. The scheduler opt(t), defined on T t, makes decisions as follows:
• If τi has σi + ti ≤ Ct, run τi on a slow machine when it arrives.
• Otherwise, run τi on the fast machine. Prioritize tasks with larger σi + ti, and break ties by taking
tasks with smaller i.

Finally, we let [n] = {1, . . . , n}, and for a set J of tasks we will write πJ to denote
∑

j∈J πj .

3 A 2-Competitive Instantly-Committing Scheduler

In this section we present and analyze a 2-competitive instantly-committing scheduler. Kuszmaul and
Westover showed that a competitive ratio of (2− ε) is impossible for instantly-committing schedulers, so
our scheduler is optimal. The scheduler, which we call ins is defined in Scheduler 3.1.

Scheduler 3.1. When task τi arrives:
• If σi + ti > 2Cti run τi on the fast machine, with the fast machine processing tasks in order of arrival.
• Otherwise run τi on a slow machine.

We analyze ins by showing inductively that C̃ins (the completion time of the fast machine) is small
compared to the work and completion time of any other schedule. For length n TAP T , scheduler alg,
and i ∈ [n], we define the quantity Kt

alg to be the sum of πj for all tasks τj ∈ T t that alg runs on the fast
machine. The key to analyzing ins is the following lemma.

Lemma 3.2. Fix a length n TAP. For all i ∈ [n], and for all instantly-committing schedulers alg,

C̃ti
ins ≤ Cti

alg + Kti
alg. (1)

Proof. We prove the lemma by induction on i. For i = 1 the claim is trivial. Now, fix i ∈ [n− 1], alg and
assume the lemma for i and for all alg′; we will prove the lemma for i+ 1, alg.

If ins runs τi+1 on a slow machine then C̃
ti+1

ins = C̃ti
ins, and Cti

alg + Ki
alg ≤ C

ti+1

alg + Ki+1
alg . Thus, the

invariant (1) is maintained. We always have C̃
ti+1

ins ≤ C̃ti
ins + πi+1, so if alg runs τi+1 on the fast machine

then the invariant (1) is also maintained, since then C
ti+1

alg + K
ti+1

alg ≥ Cti
alg + Kti

alg + πi+1 ≥ C̃ti
ins + πi+1 by

the inductive hypothesis.

The final case to consider is when alg runs τi+1 on a slow machine, while ins runs τi+1 on the fast
machine. From the definition Scheduler 3.1 of ins, the fact that ins ran ran τi+1 on a slow machine implies

2Cti+1 < σi+1 + ti+1. (2)

On the other hand, alg ran τi+1 on the fast machine. Thus,

σi+1 + ti+1 ≤ C
ti+1

alg . (3)

5



Now, we use the invariant for (i, optti+1
) to bound C̃

ti+1

ins . We have:

C̃
ti+1

ins ≤ C̃ti
ins + πi+1 ≤ Kti

opt(ti+1)
+ Cti

opt(ti+1)
+ πi+1. (4)

Because of (2) we know that opt(ti+1) must run τi+1 on the fast machine. So, we have

Kti
opt(ti+1)

+ Cti
opt(ti+1)

+ πi+1 = K
ti+1

opt(ti+1)
+ Cti

opt(ti+1)
≤ 2Cti+1 . (5)

Stringing together the above inequalities (4), (5), (2), and (3), we get

C̃i+1
ins < C

ti+1

alg .

Thus, the invariant (1) holds.

Using Lemma 3.2 it is easy to show that ins is 2-competitive.

Theorem 3.3. ins is a 2-competitive instantly-committing scheduler.

Proof. By Lemma 3.2 we have C̃tn
ins ≤ 2Copt. Thus, ins finishes using the fast machine before time 2Copt.

Any task that ins runs on a slow machine must have σi + ti ≤ 2Copt, so these tasks finish before 2Copt as
well.

4 A 1.678-Competitive Eventually-Committing Scheduler

In this section we present and analyze a ξ-competitive eventually-committing scheduler, where ξ ≈ 1.678
is the real root of the polynomial 2x3 − 3x2 − 1. Kuszmaul and Westover gave a lower bound of ϕ ≈
1.618 on the competitive ratio of any eventually-committing scheduler and conjectured that this lower
bound is tight. Our scheduler represents substantial progress towards resolving Kuszmaul and Westover’s
conjecture, improving on their previous best algorithm which had a competitive ratio of 3. Our scheduler,
which we call eve, is defined in Scheduler 4.1.

Scheduler 4.1. At time t:
• If task τi, which has arrived but not yet been started, has σi+ t ≤ ξCt, then start τi on a slow machine.
• Maintain up to one active task at a time. The fast machine is always allocated to the active task.
• When there is no active task, but there are unstarted tasks present, choose as the new active task the
unstarted task with the largest σi + ti value (breaking ties arbitrarily).

Theorem 4.2. eve is a ξ-competitive eventually-committing scheduler.

Proof. Fix TAP T . Let C̃eve denote the time when eve completes the last task run on the fast machine.
If τi is run on a slow machine at any time t, then τi finishes before ξC

t ≤ ξCopt. Thus, it suffices to show

that C̃eve ≤ ξCopt.

For any x ∈ [0,Copt], let R(x) be the first time that an online algorithm becomes aware that the optimal
schedule requires at least x completion time — that is, R(x) = inf

{
t : Ct ≥ x

}
. Let A (“actual”) be

the set of tasks that opt runs on the fast machine, and F (“fake”) be the set of tasks that opt runs on a
slow machine but eve runs on the fast machine. We can bound the sizes and arrival times of tasks in F
as follows.

Claim 4.2.1. All tasks τi ∈ F arrive before time R(Copt/ξ), and have πi < σi/ξ.

Proof. All tasks τi ∈ F are run on the fast machine by eve, and on slow machines by opt. In particular
this means

ξCti < σi + ti ≤ Copt ≤ ξCR(Copt/ξ).

Thus, ti < R(Copt/ξ). To show πi < σi/ξ, note that πi + ti ≤ Cti < σi+ti
ξ

.

To analyze when tasks in F get run it will be useful to partition F into Fbig = {τi ∈ F : σi+ti > Copt/ξ}
and Fsmall = {τi ∈ F : σi + ti ≤ Copt/ξ}. Now we show that, without loss of generality, eve does not start
any tasks in Fsmall too late.

Claim 4.2.2. If eve starts a task τ ∈ Fsmall at any time t ≥ R(Copt/ξ), then C̃eve ≤ ξCopt.

6



Proof. Note that no task τi ∈ Fsmall can be started after time Copt: since Copt+σi ≤ Copt+Copt/ξ < ξCopt,
any task τi ∈ Fsmall present but not already running at time Copt would be run on a slow machine. Let t∗
be the last time after R(Copt/ξ) when eve starts a task τ ∈ F . If t∗ does not exist the claim is vacuously
true. In light of our previous observation, t∗ < Copt. Let τi be the task that eve starts at time t∗. Because
eve prioritizes making tasks with larger σj + tj values active, at time t∗ there are no tasks τ ∈ Fbig ∪ A
present. After time t∗, no more tasks from F can arrive by Claim 4.2.1, and at most Copt − t∗ work in
A can arrive because opt must be able to complete this work. Thus,

C̃eve ≤ t∗ + (Copt − t∗) + πi = Copt + πi. (6)

Now, because τi ∈ Fsmall we have πi ≤ Copt/ξ
2; using this in (6) we find C̃eve ≤ (1+1/ξ2)Copt ≤ ξCopt.

This means that we can assume that, after time R(Copt/ξ), the only tasks that eve runs on the fast
machine are A, Fbig, and whatever the active task was at time R(Copt/ξ). We call the active task at time
R(Copt/ξ), if one exists, the stuck task, denoted τs. We split into cases depending on how large this
stuck task is.

Case 1: There is no stuck task.

In this case, we in fact have C̃eve ≤ Copt. Since there is no active task at time R(Copt/ξ), there are no
tasks present but not started on slow machines. By Claim 4.2.1, eve will run all tasks τ ̸∈ A arriving after
time R(Copt/ξ) on slow machines. Thus, at all time steps t ∈ [R(Copt/ξ),Copt], eve either has no active
task on the fast machine, or has some τ ∈ A as the active task on the fast machine, so eve completes A
at least as quickly as opt.

Case 2: There is a stuck task, with σs + ts > Copt/ξ.

Define Aearly = {τi ∈ A : ti < R(Copt/ξ)} and Alate = A \ Aearly. Let t < R(Copt/ξ) be a time when
all tasks in {τs}∪Fbig ∪Aearly have already arrived; such a time must exist by Claim 4.2.1. Observe that
opt(t) runs all tasks in {τs} ∪ Fbig ∪ Aearly on the fast machine due to Ct < Copt/ξ. This further implies
that πFbig∪{τs}∪Aearly

≤ Copt/ξ. Also πAlate ≤ Copt − R(Copt/ξ), simply because opt must complete the
work on tasks Alate after these tasks arrive. By Claim 4.2.2 we may assume without loss of generality
that, after time R(Copt/ξ), eve is always running a task from {τs} ∪ A ∪ Fbig. Thus,

C̃eve ≤ R(Copt/ξ) + πA∪Fbig∪{τs}

= R(Copt/ξ) + πAearly∪Fbig∪{τs} + πAlate

≤ R(Copt/ξ) + Copt/ξ + (Copt −R(Copt/ξ))

≤ ξCopt

Case 3: There is a stuck task, with σs + ts ≤ Copt/ξ.

This case will be the most difficult to handle of the three. It will be useful to focus now on the tasks
of Fbig that arrive after the stuck task is started. Let t∗ be the time when eve starts running τs, and let
Fbig

′ = {τi ∈ Fbig : ti ≥ t∗} be the fake tasks arriving after t∗. We first observe that, if no such tasks
arrive, eve performs very well.

Claim 4.2.3. If Fbig
′ = ∅ then C̃eve ≤ ξCopt.

Proof. At time t⋆ no tasks τi ∈ A∪Fbig can be present, since all such tasks have σi + ti > Copt/ξ, so eve
would prioritize running them on the fast machine instead of the stuck task. By Claim 4.2.2, we know
that after time t∗ eve will always be running tasks from {τs} ∪ A ∪ Fbig

′. The total work on tasks from
A that arrives after time t⋆ is at most Copt − t⋆, so if Fbig

′ = ∅ we have

C̃eve ≤ t⋆ + πs + Copt − t⋆ ≤ σs/ξ + Copt ≤ ξCopt.

By Claim 4.2.3 we may assume Fbig
′ ̸= ∅. So, let σmin = minτi∈Fbig

′(σi); we will be able to con-
trol how much work arrives in the TAP by the fact that eve never decides to run the task τi ∈ Fbig

′

7



with σi = σmin on a slow machine. Split A into Aearly = {τ ∈ A : t⋆ ≤ ti < R(σmin)} and Alate =
{τ ∈ A : ti ≥ max(t⋆, R(σmin))} (note that we use a different threshold to define earliness here than we
did in case 2). First we need the following analogue of Claim 4.2.2.

Claim 4.2.4. If eve starts a task τ ∈ Fbig
′ at any time t ∈ [R(Copt/ξ),Copt], then C̃ ≤ ξCopt.

Proof. Let t∗ be the last time in [R(Copt/ξ),Copt] when eve starts a task τ ∈ F ′. If t∗ does not exist the
claim is vacuously true. Let τi be the task that eve starts at time t∗. Because eve prioritizes making
tasks with larger σj + tj values active, at time t∗ there are no tasks τ ∈ A present. After time t∗ at
most Copt − t∗ work in A can arrive because opt must be able to complete this work. Recalling that
πFbig

′ ≤ Copt/ξ, we have

C̃eve ≤ t∗ + πFbig
′ + (Copt − t∗) ≤ ξCopt.

Claim 4.2.5. t⋆ + πFbig
′ + πAearly < (σmin +R(σmin))/ξ.

Proof. Fix a time t < R(σmin) after all tasks in Fbig
′ ∪ Aearly have arrived, and fix a task τi ∈ Fbig

′ with
σi = σmin. First, note that by Claim 4.2.4 we can assume that eve has not started τi by time t. Thus,
eve is free to start τi on a slow machine, but chooses not to. This implies

ξCt < σi + t < σmin +R(σmin). (7)

We also observe that opt(t) must run Fbig
′ ∪Aearly on the fast machine, since running any of them on

the slow machine would finish after time σmin. Thus,

t⋆ + πFbig
′ + πAearly ≤ Ct. (8)

Combining (8) and (7) gives the desired statement.

The other observation we make is that R(σmin) cannot happen too early.

Claim 4.2.6. R(σmin) > (ξ − 1)σmin.

Proof. Let τi ∈ Fbig
′ be a task with σi = σmin. Note that ti ≤ R(σmin) by Claim 4.2.1. Then, by

Claim 4.2.4 we may assume without loss of generality that at time R(σmin) eve is not running τi, and
does not choose to start τi on a slow machine. So,

R(σmin) + σmin > ξCR(σmin) ≥ ξσmin.

Now we conclude the theorem.

Claim 4.2.7. C̃eve ≤ ξCopt.

Proof. Note that πAlate ≤ Copt − R(σmin). Also, note that since τs was not put on a slow machine
immediately upon arrival, we must have πs ≤ σs/ξ ≤ Copt/ξ

2. Then, applying Claim 4.2.5 and Claim 4.2.6
we have

C̃eve ≤ πs + t⋆ + πFbig
′ + πAearly + πAlate

≤ Copt/ξ
2 + (σmin +R(σmin))/ξ + Copt −R(σmin)

≤ (1/ξ2 + (1 + ξ − 1)/ξ + 1− (ξ − 1))Copt

= (3 + 1/ξ2 − ξ)Copt

= ξCopt.

Remark 4.3. The simple nature of the lower bound in Proposition B.2, along with the fact that eve gets
a competitive ratio quite close to ϕ might leave the impression that ϕ is clearly the correct competitive
ratio, and a slightly better analysis of (a natural variant of) eve would be ϕ-competitive. However, this
is not the case: in Appendix A, we show that no non-procrastinating eventually-committing scheduler
can achieve competitive ratio better than ξ, where a scheduler is called non-procrastinating if, whenever
tasks are present, it always runs at least one task. Thus, if the competitive ratio of eve can be improved
upon, doing so will require a substantially different scheduler: one which occasionally decides to do
nothing at all despite work being present.

8



5 A 1.5-Competitive Never-Committing Scheduler

In this section we analyze never-committing schedulers. First we give a simple lower bound.

Proposition 5.1. Fix ε > 0. There is no deterministic ((1 +
√
3)/2− ε)-competitive never-committing

scheduler.

Proof. We may assume ε < .001. Let ψ = (
√
3−1)/2. Let T =

(
(1, 2ψ, 0), (∞, 1−ψ,ψ)

)
; that is, τ1 has

σ1 = 1, π1 = 2ψ, t1 = 0, and τ2 has σ2 = ∞, π2 = 1− ψ, t2 = ψ. Let T ′ =
(
(1, 2ψ, 0)

)
be the same TAP

without the second task. We have CT ′
opt = 2ψ, since opt just runs the single task on the fast machine, and

CT
opt = 1, since opt can run τ1 on a slow machine and τ2 on the fast machine.

Suppose that alg is a (ψ + 1 − ε)-competitive scheduler. On TAP T ′, at time ψ − ε/2, we claim
alg must be running τ1 on the fast machine. If not, then alg’s completion time must be at least
min(σ1, ψ − ε/2 + π1) = 1, with the branch of the min depending on whether τ1 is ever moved to
the fast machine — but this gives competitive ratio 1/(2ψ) = 1 + ψ.

Before time ψ, it is impossible to distinguish between T and T ′. Thus, alg must be running τ1 on the
fast machine at time ψ− ε/2 on TAP T . Now, we have CT

alg ≥ min(σ1 +ψ− ε/2, π1 + π2) = 1+ψ− ε/2,
with the branch of the min depending on whether τ1 is ever moved to a slow machine — but this gives
competitive ratio (1 + ψ − ε/2)/1. Thus, alg is not actually (ψ + 1− ε)-competitive.

Now we give a 1.5-competitive never-cancelling scheduler, which we call nev. Note that this compet-
itive ratio is smaller than the lower bound of ϕ ≈ 1.618 known for eventually committing schedulers, so
this demonstrates a separation between the strengths of schedulers in the two models.

Scheduler 5.2. At time t:
• If task τi has σi+ t ≤ 1.5Ct but is not currently running on a slow machine, start τi on a slow machine,
cancelling its fast machine implementation if necessary.

• Let P be the set of τi that have arrived and are not running on a slow machine. Choose τi ∈ P
maximizing σi + ti, breaking ties by choosing the task with the smaller i. Run τi on the fast machine
during this time step.

Theorem 5.3. nev is a 1.5-competitive never-committing scheduler.

Proof. Fix TAP T . Let C̃nev denote the final time when nev has work on the fast machine. Observe that
if nev ever runs τi on a slow machine, then nev finishes τi before time 1.5Copt. Thus, to show that nev is
1.5-competitive it suffices to show C̃nev ≤ 1.5Copt.

Let A = {τi : σi + ti > Copt} be the set of tasks that opt actually runs on the fast machine.

Claim 5.3.1. nev never runs a task τ ∈ A on the fast machine after time Copt.

Proof. nev always allocates the fast machine to the present task with the largest value of σi + ti among
tasks that aren’t running on slow machines. Thus, whenever there are tasks from A that aren’t running
on slow machines, nev will run one such task on the fast machine. opt is able to complete all tasks in A
on the fast machine by time Copt. Thus, nev completes or starts on slow machines all tasks τ ∈ A before
time Copt.

This means that the only way to have C̃eve > Copt is if there are tasks with σi + ti ≤ Copt that have
yet to be completed at time Copt; we assume that this is the case for the remainder of the proof. Let
Π(x) be the total amount of work nev performs on the fast machine after time Copt across all tasks with
σi + ti ∈ [x, 1.5x]. For any x ≤ Copt, let R(x) = inf{t | Ct ≥ x} be the first time an online algorithm
becomes aware that the optimal schedule requires x completion time; the following key claim allows us
to bound this left-over work Π(x) in terms of R(x).

Claim 5.3.2. For all x, we have Π(x) ≤ x−R(x).

Proof. Let Jx denote the set of tasks with σi + ti ≤ 1.5x that nev runs on the fast machine at some time
after Copt. First, note that all τi ∈ Jx must have ti < R(x), or else τi would be placed on a slow machine
upon arrival. Choose ε sufficiently small, such that no tasks arrive between times R(x) − ε and R(x).
Since R(x)−ε < R(x), we know CR(x)−ε < x, and so opt(R(x)−ε) must run all tasks with σi+ ti ≥ x on
the fast machine. In order for opt(R(x)− ε) to finish these tasks before time CR(x)−ε < x, opt(R(x)− ε)

9



must have at most x−R(x) + ε fast work remaining across all such tasks.

Now, by the same argument as in Claim 5.3.1, because nev prioritizes tasks with σi+ti ≥ x over tasks
with σi + ti < x on the fast machine whenever they are present (and not yet started on slow machines),
nev has at most x − R(x) + ε work remaining on tasks in Jx at time R(x) − ε. Because no more tasks
from Jx arrive after this time, we have Π(x) ≤ x − R(x) + ε as well. The claim held for all ε > 0, and
so taking ε→ 0 we have Π(x) ≤ x−R(x).

We now give an observation to control R(x). Let τi⋆ be the task, among all tasks that nev runs on
the fast machine after time Copt, with the smallest value of σi + ti. Let λ = σi⋆ + ti⋆ .

Claim 5.3.3. For all x ≥ λ, we have R(x) > 1.5x− λ.

Proof. First, note that ti⋆ ≤ R(λ) ≤ λ or else nev would start τi⋆ on a slow machine upon arrival. Now,
because nev doesn’t start τi⋆ on a slow machine at time R(x) > ti⋆ , we have R(x) + σi⋆ > 1.5x.

To prove the theorem, it will now suffice to branch into two cases, based on how large λ is.

Case 1: λ ≥ (2/3)Copt.

In this case, since 1.5λ ≥ Copt, by Claim 5.3.1 all left-over work at time Copt comes from tasks with
σi + ti ∈ [λ, 1.5λ]. By Claim 5.3.2, the total amount of such work is at most λ − R(λ). Then, by
Claim 5.3.3, we know R(λ) > .5λ. Together, this implies that the total amount of leftover work is at
most .5λ ≤ .5Copt.

Case 2: λ < 2Copt/3.

First note that λ ≥ Copt/2 or else τi⋆ would be started on a slow machine at time Copt. So, all left-over
work at time Copt comes either from tasks with σi+ti ∈ [λ, 1.5λ], or from tasks with σi+ti ∈ [1.5λ, 1.52λ].
By Claim 5.3.2, we can therefore bound the total amount of leftover work by (λ−R(λ))+(1.5λ−R(1.5λ)).
Now, by Claim 5.3.3, this quantity can be at most (λ− .5λ) + (1.5λ− 1.25λ) = .75λ. Since λ < 2Copt/3,
this is at most .5Copt.

Remark 5.4. In Appendix A we show that Scheduler 5.2 is optimal among never-committing schedulers
that never cancel implementations running on slow machines. This shows that improving on Scheduler 5.2
will require a substantially different scheduler.

6 Extending Beyond the Massively Parallel Regime

In Theorem 3.3, we have shown that Scheduler 3.1 is a 2-competitive instantly-committing scheduler in
the Massively Parallel regime of the SPDP. In this section, we will show that in fact, Scheduler 3.1 is a 2-
competitive scheduler even outside of the Massively Parallel regime, although the analysis is slightly more
complicated. This result is interesting in its own right, resolving an open question from [KW24].However,
we think that the main virtue of this proof is that it serves as a proof-of-concept that results from the
conceptually simpler Massively Parallel regime can be adapted to apply to the general SPDP: we conjec-
ture that all upper bounds holding in the massively parallel regime should also hold in the general SPDP.

Scheduler 3.1 is not a defined scheduler in the SPDP, because we specify the decisions for which tasks
to run, but do not specify how to schedule the tasks. We extend ins to the general SPDP as follows:

Scheduler 6.1. When task τi arrives:
• If σi + ti > 2Cti parallelize τi.
• Otherwise, serialize τi.
At every timestep, if there are x serial jobs present, then ins schedules the jobs by allocating a processor
to each of the min(p, x) serial jobs with the most remaining work, and then allocating any remaining
processors to an arbitrary parallel job (if a parallel job is present).

Now we analyze ins. We say ins is saturated at time t if ins has no idle processors at time t.

Lemma 6.2. If ins is unsaturated right before finishing, then Cins ≤ 2Copt.

10



Proof. We claim that if ins is unsaturated at time t, then for each task τi present at time t, τi has been
run on every time step since it arrived. Suppose this is not the case. Then, there must have been some
time step before time t when there were at least p serial jobs with at least as much remaining work as τi.
But then τi will finish at the same time as these other jobs, contradicting the fact that ins is unsaturated
at time t. Thus, if ins is unsaturated at time t, then t ≤ σi + ti for some i such that ins ran τi in serial.
Thus, t ≤ 2Copt, as desired.

By virtue of Lemma 6.2 it suffices to consider the case that ins is saturated immediately before
finishing. Let t∗ be the final time in [0,Cins) when ins is unsaturated (we set t∗ = 0 if ins is always
saturated). Let i∗ ∈ [n] be the smallest i such that ti ≥ t∗; in fact we will have ti∗ = t∗, since in
order to transition from being unsaturated to being saturated, some tasks must arrive. For integer
i ∈ [i∗, n], let Ki

alg denote the sum of πj for each τj with i∗ ≤ j ≤ i that alg runs in parallel; If alg is
an instantly-committing scheduler then Ki

alg can be computed at time ti. Now we prove an analogue of
Lemma 3.2.

Lemma 6.3. Fix a length n TAP. For all i ∈ [i∗, n], and for all instantly-committing schedulers alg,

Ki
ins ≤ (Ci

alg − t∗)p+ Ki
alg. (9)

Proof. We prove (9) by induction on i. The base case is i = i∗; here the claim trivially holds. Subse-
quently, note that if alg takes at least as much work as ins on τi (i.e., either alg runs τi in parallel or ins
runs τi in serial) then Ki

alg ≥ Ki
ins, and Ci

alg ≥ t∗, so (9) is true. In the case that alg serializes τi while ins
parallelizes τi we now have:

Ci
alg ≥ σi + ti ≥ 2Cti .

One consequence of this is that opt(ti) parallelizes τi, and so we have (9) for (i, opt(ti)). Thus,

Ki
ins ≤ (Cti − t∗)p+ Ki

opt(ti) ≤ (2Cti − 2t∗)p ≤ (Ci
alg − t∗)p.

In the Massively Parallel regime Theorem 3.3 followed immediately from Lemma 3.2. Slightly more
work is required in the general setting, but Lemma 6.3 is still very useful.

Theorem 6.4. ins is a 2-competitive instantly-committing scheduler in the SPDP.

Proof. Recall from Lemma 6.2 that we need only consider the case that ins ends saturated, and recall
the definition of t∗. For any scheduler alg, let Balg denote the work that alg has left immediately before
time t∗, and let Kalg be work that alg takes on tasks τi with ti ≥ t∗. Because ins ends saturated, we have

Cins = t∗ + (Kins + Bins)/p.

Applying Lemma 6.3 gives

t∗ + (Kins + Bins)/p ≤ Copt + (Kopt + Bins)/p. (10)

So, to conclude, it suffices to show that Bins +Kopt ≤ pCopt. Let S be the set of tasks that ins has present
immediately before time t∗. Let W =

∑
τi∈S σi. Clearly Bins ≤W . On the other hand, opt must take at

least W work on the tasks S, and can have made at most pt∗ progress on these tasks by time t∗. Thus,

Bins ≤W ≤ pt∗ + Bopt.

Therefore,
Bins + Kopt ≤ pt∗ + Bopt + Kopt ≤ pCopt.

Using this in (10) gives Cins ≤ 2Copt.

References

[AGM11] S Anand, Naveen Garg, and Nicole Megow. “Meeting deadlines: How much speed suf-
fices?” In: Automata, Languages and Programming: 38th International Colloquium,
ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part I 38. Springer.
2011, pp. 232–243.

11



[Asp+97] James Aspnes et al. “On-line routing of virtual circuits with applications to load
balancing and machine scheduling”. In: Journal of the ACM (JACM) 44.3 (1997),
pp. 486–504.

[Awe+95] Baruch Awerbuch et al. “Load balancing in the Lp norm”. In: Proceedings of IEEE
36th Annual Foundations of Computer Science. IEEE. 1995, pp. 383–391.

[BS83] Brenda S Baker and Jerald S Schwarz. “Shelf algorithms for two-dimensional packing
problems”. In: SIAM Journal on Computing 12.3 (1983), pp. 508–525.

[Car08] Ioannis Caragiannis. “Better bounds for online load balancing on unrelated ma-
chines”. In: Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete
algorithms. 2008, pp. 972–981.

[DLR23] Shichuan Deng, Jian Li, and Yuval Rabani. “Generalized unrelated machine schedul-
ing problem”. In: Proceedings of the 2023 Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA). SIAM. 2023, pp. 2898–2916.

[DM07] Richard A. Dutton and Weizhen Mao. “Online scheduling of malleable parallel jobs”.
In: Proceedings of the 19th IASTED International Conference on Parallel and Dis-
tributed Computing and Systems. PDCS ’07. USA: ACTA Press, 2007, pp. 136–141.
isbn: 978-0-88986-704-8. (Visited on 02/02/2023).

[GK10] Shouwei Guo and Liying Kang. “Online scheduling of malleable parallel jobs with
setup times on two identical machines”. en. In: European Journal of Operational
Research 206.3 (Nov. 2010), pp. 555–561. issn: 0377-2217. doi: 10.1016/j.ejor.
2010.03.005. url: https://www.sciencedirect.com/science/article/pii/
S037722171000175X (visited on 02/09/2023).

[Gra69] R. L. Graham. “Bounds on Multiprocessing Timing Anomalies”. In: SIAM Journal
on Applied Mathematics 17.2 (1969), pp. 416–429. doi: 10.1137/0117039. eprint:
https://doi.org/10.1137/0117039. url: https://doi.org/10.1137/0117039.

[Gup+17] Varun Gupta et al. “Stochastic online scheduling on unrelated machines”. In: Inte-
ger Programming and Combinatorial Optimization: 19th International Conference,
IPCO 2017, Waterloo, ON, Canada, June 26-28, 2017, Proceedings 19. Springer.
2017, pp. 228–240.

[Gup+20] Varun Gupta et al. “Greed works—online algorithms for unrelated machine stochas-
tic scheduling”. In: Mathematics of operations research 45.2 (2020), pp. 497–516.

[Gup+21] Anupam Gupta et al. “Stochastic load balancing on unrelated machines”. In: Math-
ematics of Operations Research 46.1 (2021), pp. 115–133.

[HP08] Johann L Hurink and Jacob Jan Paulus. “Online algorithm for parallel job schedul-
ing and strip packing”. In: Approximation and Online Algorithms: 5th Interna-
tional Workshop, WAOA 2007, Eilat, Israel, October 11-12, 2007. Revised Papers
5. Springer. 2008, pp. 67–74.

[HS76] Ellis Horowitz and Sartaj Sahni. “Exact and Approximate Algorithms for Scheduling
Nonidentical Processors”. In: J. ACM 23.2 (Apr. 1976), pp. 317–327. issn: 0004-
5411. doi: 10.1145/321941.321951. url: https://doi.org/10.1145/321941.
321951.

[IL23] Sungjin Im and Shi Li. “Improved approximations for unrelated machine scheduling”.
In: Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). SIAM. 2023, pp. 2917–2946.

[KW24] William Kuszmaul and Alek Westover. “Scheduling Jobs with Work-Inefficient Par-
allel Solutions”. In: Proceedings of the 36th ACM Symposium on Parallelism in Al-
gorithms and Architectures. 2024, pp. 101–111.

[LST90] Jan Karel Lenstra, David B Shmoys, and Éva Tardos. “Approximation algorithms for
scheduling unrelated parallel machines”. In: Mathematical programming 46 (1990),
pp. 259–271.

12

https://doi.org/10.1016/j.ejor.2010.03.005
https://doi.org/10.1016/j.ejor.2010.03.005
https://www.sciencedirect.com/science/article/pii/S037722171000175X
https://www.sciencedirect.com/science/article/pii/S037722171000175X
https://doi.org/10.1137/0117039
https://doi.org/10.1137/0117039
https://doi.org/10.1137/0117039
https://doi.org/10.1145/321941.321951
https://doi.org/10.1145/321941.321951
https://doi.org/10.1145/321941.321951


[LT94] Walter Ludwig and Prasoon Tiwari. “Scheduling malleable and nonmalleable par-
allel tasks”. In: Proceedings of the fifth annual ACM-SIAM symposium on Discrete
algorithms. 1994, pp. 167–176.

[Mol] Marco Molinaro. “Stochastic ℓp Load Balancing and Moment Problems via the L-
Function Method”. In: Proceedings of the 2019 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 343–354. doi: 10.1137/1.9781611975482.22.
eprint: https://epubs.siam.org/doi/pdf/10.1137/1.9781611975482.22. url:
https://epubs.siam.org/doi/abs/10.1137/1.9781611975482.22.

[MRT99] Gregory Mounie, Christophe Rapine, and Dennis Trystram. “Efficient approximation
algorithms for scheduling malleable tasks”. In: Proceedings of the eleventh annual
ACM symposium on Parallel algorithms and architectures. SPAA ’99. New York, NY,
USA: Association for Computing Machinery, 1999, pp. 23–32. isbn: 978-1-58113-124-
6. doi: 10.1145/305619.305622. url: https://doi.org/10.1145/305619.305622
(visited on 02/02/2023).

[PSM20] Daniel R. Page, Roberto Solis-Oba, and Marten Maack. “Makespan minimization
on unrelated parallel machines with simple job-intersection structure and bounded
job assignments”. In: Theoretical Computer Science 809 (2020), pp. 204–217. issn:
0304-3975. doi: https://doi.org/10.1016/j.tcs.2019.12.009. url: https:
//www.sciencedirect.com/science/article/pii/S0304397519307844.

[SS02] Andreas S. Schulz and Martin Skutella. “Scheduling Unrelated Machines by Ran-
domized Rounding”. In: SIAM Journal on Discrete Mathematics 15.4 (2002), pp. 450–
469. doi: 10.1137/S0895480199357078. eprint: https://doi.org/10.1137/
S0895480199357078. url: https://doi.org/10.1137/S0895480199357078.

[Tur+94a] John Turek et al. “Scheduling parallel tasks to minimize average response time”. In:
Proceedings of the fifth annual ACM-SIAM symposium on Discrete algorithms. 1994,
pp. 112–121.

[Tur+94b] John Turek et al. “Scheduling parallelizable tasks to minimize average response
time”. In: Proceedings of the sixth annual ACM symposium on Parallel algorithms
and architectures. SPAA ’94. New York, NY, USA: Association for Computing Ma-
chinery, 1994, pp. 200–209. isbn: 978-0-89791-671-4. doi: 10.1145/181014.181331.
url: https://doi.org/10.1145/181014.181331 (visited on 02/09/2023).

[TWY92] John Turek, Joel L Wolf, and Philip S Yu. “Approximate algorithms scheduling par-
allelizable tasks”. In: Proceedings of the fourth annual ACM symposium on Parallel
algorithms and architectures. 1992, pp. 323–332.

[VHW14] Nodari Vakhania, Jose Hernandez, and Frank Werner. “Scheduling Unrelated Ma-
chines with Two Types of Jobs”. In: International Journal of Production Research
52 (Feb. 2014), pp. 1–9. doi: 10.1080/00207543.2014.888789.

[Yao77] Andrew Chi-Chin Yao. “Probabilistic computations: Toward a unified measure of
complexity”. In: 18th Annual Symposium on Foundations of Computer Science (sfcs
1977). IEEE Computer Society. 1977, pp. 222–227.

[YCZ18] Deshi Ye, Danny Z. Chen, and Guochuan Zhang. “Online scheduling of moldable par-
allel tasks”. en. In: Journal of Scheduling 21.6 (2018). Publisher: Springer, pp. 647–
654. url: https://ideas.repec.org//a/spr/jsched/v21y2018i6d10.1007_
s10951-018-0556-2.html (visited on 02/03/2023).

[YHZ09] Deshi Ye, Xin Han, and Guochuan Zhang. “A note on online strip packing”. In:
Journal of Combinatorial Optimization 17.4 (2009), pp. 417–423.

[Zha+22] Xiaoyan Zhang et al. “Randomized selection algorithm for online stochastic unrelated
machines scheduling”. In: Journal of Combinatorial Optimization (2022), pp. 1–16.

13

https://doi.org/10.1137/1.9781611975482.22
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975482.22
https://epubs.siam.org/doi/abs/10.1137/1.9781611975482.22
https://doi.org/10.1145/305619.305622
https://doi.org/10.1145/305619.305622
https://doi.org/https://doi.org/10.1016/j.tcs.2019.12.009
https://www.sciencedirect.com/science/article/pii/S0304397519307844
https://www.sciencedirect.com/science/article/pii/S0304397519307844
https://doi.org/10.1137/S0895480199357078
https://doi.org/10.1137/S0895480199357078
https://doi.org/10.1137/S0895480199357078
https://doi.org/10.1137/S0895480199357078
https://doi.org/10.1145/181014.181331
https://doi.org/10.1145/181014.181331
https://doi.org/10.1080/00207543.2014.888789
https://ideas.repec.org//a/spr/jsched/v21y2018i6d10.1007_s10951-018-0556-2.html
https://ideas.repec.org//a/spr/jsched/v21y2018i6d10.1007_s10951-018-0556-2.html


A Barriers Against Improved Schedulers

In this section we show that the schedulers of Section 4 and Section 5 are optimal among natural restricted
classes of schedulers. This highlights what changes must be made to the schedulers in order to have hopes
of achieving better competitive ratios.

First we show that among non-procrastinating eventually-committing schedulers (i.e., eventually-
committing schedulers with the property that whenever tasks are present, they will run at least one
task), the scheduler Scheduler 4.1 is optimal.

Proposition A.1. Fix ε > 0. Let ξ ≈ 1.677 denote the real root of the polynomial 2x3 − 3x2 − 1. There
is no deterministic (ξ − ε)-competitive non-procrastinating eventually-committing scheduler.

Proof. It suffices to consider the case that ε < .001. Fix a non-procrastinating eventually-committing
scheduler alg. Assume towards contradiction that alg is (ξ − ε)-competitive. We now describe a TAP
T on which Calg ≥ ξCopt. The TAP starts with τ1 = (1/ξ, 1/ξ2, 0). Next, let τ2 = (1 − ε2, 1/ξ − ε2, ε2).
Finally, at each time t ∈ [ξ + 1/ξ − 2, 1− ε2] ∩ (Nε2), give a task τ = (∞, ε2, t).

We now argue that alg must run all the tasks on the fast machine. Because alg is a non-procrastinating
(ξ − ε)-competitive scheduler, alg must instantly start τ1 on the fast machine (in case there are no tasks
after τ1). Now we argue that alg runs τ2 on the fast machine as well. Suppose that alg starts τ2 on a
slow machine at some time t with

1− ε2 + t > (ξ − ε)Ct. (11)

Then, alg would not be (ξ − ε)-competitive on the truncated TAP T t. Thus, alg must not start τ2 on a
slow machine at any time t satisfying (11). We now show that (11) holds for all t ≥ ε, thus proving that
alg must run τ2 on the fast machine. For t ∈ [ε2, ξ + 1/ξ − 2) we have Ct ≤ 1/ξ, and 1 − ε2 + t ≥ 1, so
(11) holds. For t ≥ ξ + 1/ξ − 2 we have

Ct ≤ min(1, t− ξ + 2 + ε2).

Thus, it suffices to show:
1− ε2 + t > (ξ − ε)min(1, t− ξ + 2 + ε2). (12)

To show (12) it suffices to check (12) for t = ξ − 1− ε2 (by monotonicity of the inequality on either side
of t = ξ − 1). At t = ξ − 1− ε2 (12) is:

ξ − 2ε2 > ξ − ε,

which is true because ε < .001.
We have now shown that alg runs all tasks in T on the fast machine. Thus, (by definition of ξ)

Calg ≥ 1/ξ2 + 1/ξ − ε2 + 1− (1/ξ + ξ − 2)− ε2 = ξ − 2ε2.

However, Copt ≤ 1. This contradicts the assumption that alg is (ξ − ε)-competitive.

Now, we show that the 1.5-competitive scheduler of Section 5 is optimal among never-committing
schedulers that don’t cancel tasks on slow machines.

Proposition A.2. Let alg be a deterministic never-committing scheduler that never cancels serial tasks.
Then, for any ε > 0, there is a TAP T with n ≤ O(1) on which alg has is not (1.5− ε)-competitive.

Proof. It suffices to consider the case that ε < .001. The TAP is defined as follows. First, τ1 = (2, 1, 0).
Then, for each time t ∈ [ε2, 1− ε2] ∩Nε2, a task τ = (∞, ε2, t) arrives. We will show that if alg starts τ1
on a slow machine at any time t then alg is not (1.5− ε)-competitive on T t. We show this by considering
two cases.

Case 1: alg starts τ1 on a slow machine at time t ∈ [0, 1].

If alg does this, then CT t

alg ≥ 2 + t. However, Ct ≤ t+ 1 + ε2. Thus,

CT t

alg /C
t ≥ 2 + t

t+ 1 + ε2
≥ 3

2 + ε2
> 1.5− ε.

So alg cannot start τ1 on a slow machine at this time.
Case 2: alg starts τ1 on a slow machine at time t ≥ 1.

If alg does this, then Calg ≥ 2 + t. However, Copt ≤ 2. Thus,

Calg/Copt ≥ 1.5.

In conclusion, alg must run τ1 on the fast machine. But then

Calg ≥ 3− ε2 > (1.5− ε)Copt = (1.5− ε)2,

a contradiction.

14



B Lower Bounds from [KW24]

In this section we state, for the reader’s convenience, the lower bounds from [KW24] against instantly-
and eventually- committing schedulers.

Proposition B.1 (Kuszmaul, Westover [KW24]). Fix ε > 0. There is no deterministic (2 − ε)-
competitive instantly-committing scheduler.

Proof. Consider an n-task TAP where for each i ∈ [n], the i-th task has σi = 2i, πi = 2i−1, and the
arrival times are all very close to 0. For each i ∈ [n], it is possible to handle the first i tasks in the TAP
with completion time 2i−1. Thus, a (2− ε)-competitive scheduler cannot afford to run task τi on a slow
machine. So, a (2− ε)-competitive scheduler must run all tasks on the fast machine, giving completion
time at least 2n − 1 on this TAP, while Copt ≤ 2n−1. For large enough n this implies that the scheduler
is not actually 2− ε competitive.

Proposition B.2 (Kuszmaul, Westover [KW24]). Fix ε > 0. There is no deterministic (ϕ − ε)-
competitive eventually-committing scheduler, where ϕ ≈ 1.618 is the golden ratio.

Proof. Suppose that alg is a (ϕ − ε)-competitive eventually-committing scheduler. Let τ1 = (ϕ, 1, 0); if
there are no further tasks, alg must run τ1 on the fast machine, starting at some time t0 ≤ 1/ϕ. Let
τ2 = (∞, ϕ−t0, t0). On this TAP, Copt = ϕ, while Calg ≥ ϕ+1 = ϕ2. So alg is not (ϕ−ε)-competitive.

C Randomized Lower Bounds

In this section we give lower bounds against randomized schedulers. Our main tool is Yao’s minimax
principle [Yao77], which allows us to prove a lower bound on the competitive ratio by exhibiting a
distribution over TAPs, and showing that any deterministic scheduler has poor expected cost on a
random TAP drawn from the distribution.

Proposition C.1. For any ε > 0.03, there is no (5/3 − ε)-competitive DoA scheduler, even with ran-
domization.

Proof. Fix N = 25. For k ∈ N, define Tk to be a length k TAP with σi = 2i+1, πi = 2i. Let D denote
the following distribution over TAPs: choose k ∈ [N ] uniformly randomly, and then output TAP Tk. By
brute force enumeration of all possible deterministic instantly-committing strategies, one can show that
no such strategy is 1.637-competitive on this TAP.

Proposition C.2. For any ε > 0, there is no ((1 +
√
3)/4 − ε)-competitive eventually-committing

scheduler, even with randomization.

Proof. In the proof of Proposition 5.1 we defined two TAPs, and showed that no deterministic eventually-
committing scheduler is ((1 +

√
3)/2 − ε)-competitive on both of the TAPs. One can show that if

we randomly choose between the two TAPs of Proposition 5.1, there is no deterministic eventually-
committing scheduler with expected competitive ratio (1 +

√
3)/4− ε.

15


	Introduction
	Background
	This Work
	Related Work
	Open Questions

	Preliminaries
	The One-Fast-Many-Slow Decision Problem
	Connection to the SPDP
	Notation

	A 2-Competitive Instantly-Committing Scheduler
	A 1.678-Competitive Eventually-Committing Scheduler
	A 1.5-Competitive Never-Committing Scheduler
	Extending Beyond the Massively Parallel Regime
	Barriers Against Improved Schedulers
	Lower Bounds from ku24
	Randomized Lower Bounds

