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Abstract

In a recent paper, Hunter, Milojević, Sudakov and Tomon consider ex(n, {Ks,s, H-ind}), the maximum
number of edges in an n-vertex graph containing no copy of the complete bipartite graph Ks,s and no
induced copy of a pattern graph H. They conjecture that this quantity can be at most a constant factor
larger than the standard extremal number of H; that is, that ex(n, {Ks,s, H-ind}) ≤ O(ex(n,H)). We
make progress towards resolving this conjecture. In particular, we show the following:

i) As originally stated, the conjecture has a simple counterexample, where H is the graph with 3
vertices and 1 edge. However, one may conjecture that the statement holds for all connected H;
we show that this would also rule out disconnected counterexamples with more than 1 edge.

ii) The induced extremal number of a graph differs by at most O(n) from that of its 2-core; by a result
of Hunter, Milojević, Sudakov and Tomon, this allows us to recover in the induced setting known
extremal number upper bounds for graphs with a single cycle.

iii) If H is r-degenerate, ex(n, {Ks,s, H-ind}) ≤ O(n2−1/(20r4)). Since the degeneracy of a graph is
known to control the standard extremal number, this establishes a nontrivial relationship between
ex(n,H) and ex(n, {Ks,s, H-ind}).

We also propose potential connected counterexamples from incidence geometry but are unable to
determine whether the conjecture holds in these cases due to the difficulty of bounding standard extremal
numbers.

1 Introduction

The extremal number of a graph H, denoted ex(n,H), is the maximum number of edges in an n-vertex
graph with no copy of H as a subgraph. It is known due to Erdős, Stone and Simonovits that ex(n,H) =

n2
(
1− 1

χ(H)−1

)
+ o(n2) for all H, where χ(H) is the chromatic number [ES46; ES66]. However, for bipar-

tite graphs, all this gives is ex(n,H) ≤ o(n2); understanding the extremal exponents of bipartite graphs is a
major ongoing area of research.

What if, instead of just finding H as a subgraph, we are interested in finding an induced copy of H? We
could define ex(n,H-ind) to be the maximum number of edges in an n-vertex graph with no induced copy of
H. However, this notion is rather uninteresting: unless H is itself complete, the complete graph Kn avoids
it as an induced subgraph, so ex(n,H-ind) =

(
n
2

)
. One might ask, though, whether this is in some sense

the only way to avoid induced copies of H without avoiding H altogether. That is, perhaps if a graph has
enough edges to force many copies of H, but contains no induced copy of H, there must exist some portion of
the graph with very high density. Hunter, Milojević, Sudakov and Tomon propose the following conjecture:

Conjecture 1 ([Hun+24]). For any s ∈ N, and any bipartite H,

ex(n, {Ks,s, H-ind}) ≤ O(ex(n,H)).

We always have ex(n, {Ks,s, H-ind}) ≥ ex(n, {Ks,s, H}), and if s ≥ |V (H)| it is clear that ex(n, {Ks,s, H}) =
ex(n,H). So, this conjecture is equivalent to the claim that, for sufficiently large s, ex(n, {Ks,s, H-ind}) and
ex(n,H) differ by at most a constant factor (where the constant depends on s and H). As a heuristic for
why such a conjecture might be reasonable, one could consider searching for copies of H in the Erdős–Rényi
random graph G(n, p): if p ≥ Ω(1), there will be Θ(n2s) many copies of Ks,s, but if p ≤ o(1), then all but a
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subconstant fraction of the copies of H will be induced copies.

Hunter et al provide some evidence for their conjecture by directly reproducing many of the best known
asymptotic upper bounds on standard extremal numbers. In particular, they show ex(n, {Ks,s, C2k-ind}) ≤
O(n1+1/k) for C2k a length-2k cycle, ex(n, {Ks,s, Q8-ind}) ≤ O(n8/5) for Q8 the skeleton of a 3-dimensional
cube, and ex(n, {Ks,s, H-ind}) ≤ O(n2−1/r) for any bipartite H with maximum degree r on one side, all of
which match the corresponding bounds known for ex(n,H) [Hun+24]. Fox, Nenadov and Pham show that
this last result can be extended to give ex(n, {Ks,s, H-ind}) ≤ O(n2−1/r) whenever one side of H has at
most r vertices that are complete to the other side, and all other vertices on that side have degree at most
r [FNP24]. Axenovich and Zimmerman show that, if H is additionally required to contain no copy of Kr,r,
and the host graph is bipartite, the host graph can have only o(n2−1/r) edges [AZ24], providing an induced
analogue of a result of Sudakov and Tomon [ST20]. It is also known due to Scott, Seymour and Spirkl that
ex(n, {Ks,s, T -ind}) ≤ O(n) when T is a tree [SSS23]; Hunter et al show that the constant factor in that
result can be made polynomial in s.

1.1 Main results

Our first observation is a simple counterexample to Conjecture 1:

Proposition 1. There exists a bipartite graph H such that ex(n, {K2,2, H-ind}) ≥ ω(ex(n,H)).

The graph H serving as a counterexample consists of 3 vertices, with 2 joined by a single edge. This
seems like a rather exceptional case, which may not preclude the conjecture from being morally true. To
rule out such examples, one could modify Conjecture 1 to require H to be connected, or to have more than
a single edge — our next observation shows that these two modified statements are equivalent.

Proposition 2. For any s ∈ N, ifH is the disjoint union of two subgraphsH1 andH2, then ex(n, {Ks,s, H-ind}) ≤
O(ex(n, {Ks,s, H1-ind}) + ex(n, {Ks,s, H2-ind}) + n).

One particular consequence of Proposition 2 is that, as long as ex(n, {Ks,s, H-ind}) ≥ ω(n), this value
remains unchanged up to constant factors when we remove all isolated vertices from H. For the standard
extremal number, it is easy to see that such a statement holds even if we also remove all vertices of degree
1. Our next result reproduces this fact in the induced setting.

Definition 1. For k ≥ 1, k-core(G) is the largest induced subgraph of G with minimum degree at least k.

Theorem 1. For any s ∈ N and any graph H, ex(n, {Ks,s, H-ind}) ≤ O(ex(n, {Ks,s, 2-core(H)-ind}) + n).

Together with the results of [Hun+24], Proposition 2 and Theorem 1 imply that ex(n, {Ks,s, H-ind}) ≤
O(n1+1/k) for any bipartite H with girth at least 2k as long as every connected component of H contains
at most a single cycle.

With the goal of determining a relationship between ex(n,H) and ex(n, {Ks,s, H-ind}) in general, we
give an upper bound in terms of the degeneracy of H.

Definition 2. For k ≥ 1, a graph G is called k-degenerate if (k + 1)-core(G) is empty. We define the
degeneracy of G to be the minimum k such that G is k-degenerate.

Although there is no general method known for determining extremal numbers of bipartite graphs, it’s
known that the degeneracy of the pattern graph always offers a somewhat reasonable proxy: for any bipartite
H of degeneracy r, Ω(n2−2/r) ≤ ex(n,H) ≤ O(n2−1/4r) [AKS03], and it’s conjectured that the upper bound
can be strengthened to O(n2−1/r) [Erd97]. We show that degeneracy also controls the induced extremal
number, although we achieve weaker dependency on r than is known for standard extremal numbers:

Theorem 2. For any s ∈ N, and any bipartite H of degeneracy r, ex(n, {Ks,s, H-ind}) ≤ O(n2−1/(20r4)).

2



The fact that degeneracy controls both immediately establishes some nontrivial relationship between
the standard and induced extremal numbers: if ex(n,H) = O(nα) and ex(n, {Ks,s, H-ind}) = Ω(nβ),

we can show unconditionally that β ≤ 2 − (2−α)4

320 (whereas Conjecture 1 would hold that β ≤ α). It
would be interesting to quantitatively improve this relationship by showing an upper bound of the form
ex(n, {Ks,s, H-ind}) ≤ O(n2−1/cr) for some constant c independent of r; we make some progress towards
this goal by finding copies of H which, while not necessary fully induced, avoid some particular subset of
H’s non-edges.

Finally, in Section 5, we discuss the possibility that Conjecture 1 could be morally false, as well as false
for the rather silly reason of Proposition 1. We note several graphs H where ex(n, {K2,2, H-ind) = Θ(n3/2),
but such that there may be heuristic evidence to believe ex(n,H) ≤ o(n3/2). However, due to the difficulty
of determining standard extremal numbers, we are unable to prove such upper bounds.

1.2 Additional related work

The structure of graphs avoiding given induced subgraphs has been an active area of research for some time.
Much existing work is motivated by the Erdős–Hajnal conjecture, which claims that, for any H, any n-vertex
graph with no induced copy of H must contain a clique or independent set of size polynomial in n [EH89;
Chu14]. Towards this conjecture, Fox and Sudakov have shown that any graph avoiding induced copies of
H must contain either a complete bipartite graph or independent set of polynomial size [FS09].

To our knowledge, Hunter et al are the first to systematically consider ex(n, {Ks,s, H-ind) for general
bipartite H, however the problem of forbidding one induced graph and one non-induced graph has recieved
prior attention. Kühn and Osthus have shown that ex(n, {Ks,s,H-ind}) ≤ O(n), where H is the family of all
subdivisions of a given graph H [KO04]. Loh, Tait, Timmons and Zhou showed that ex(n, {Kr,Ks,t-ind}) ≤
O(n2−1/s) for all r, s, t [Loh+18], prompting further consideration of ex(n, {F,H-ind}) for non-bipartite
F [EGM19; Ill21a; Ill21b].

2 Disconnected counterexample

We begin by noting our counterexample to Conjecture 1.

Proposition 1. There exists a bipartite graph H such that ex(n, {K2,2, H-ind}) ≥ ω(ex(n,H)).

Proof. Let H be the graph consisting of two vertices connected by an edge, and a third isolated vertex. Note
that

ex(n,H) =

{
1 if n = 2

0 otherwise
,

since a subgraph isomorphic to H just entails a single edge plus some third vertex not involved in that
edge. However, in the star graph K1,n−1, any three vertices induce either an independent set or a path,
depending on whether one of the three vertices is the center of the star. Since K1,n−1 contains no cycles,
we have exhibited a graph on n − 1 many edges with no copy of K2,2 and no induced copy of H, giving
ex(n, {K2,2, H-ind}) ≥ n− 1 ≥ ω(ex(n,H)).

This certainly disproves Conjecture 1, but in a rather unsatisfying way. For one, H is disconnected —
it would be interesting to have a connected counterexample. Another, even more serious, objection is that
H has only a single edge, so ex(n,H) ≤ o(1). Any graph with more than one edge is avoided either by a
star or a matching, so will have ex(n,H) ≥ Ω(n); it might well be that Conjecture 1 fails only in the trivial
case when ex(n,H) goes to 0, and so holds whenever H has at least 2 edges. To rule out such examples, we
could propose either of the following two modifications of Conjecture 1:

Conjecture 2. For any s ∈ N, and any connected bipartite H,

ex(n, {Ks,s, H-ind}) ≤ O(ex(n,H)).
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Conjecture 3. For any s ∈ N, and any bipartite H with at least 2 edges,

ex(n, {Ks,s, H-ind}) ≤ O(ex(n,H)).

Since the only connected graph with a single edge isK1,1, it is clear that Conjecture 3 implies Conjecture 2.
Our next observation will show that the reverse implication also holds, so that these two modifications of
Conjecture 1 are equivalent.

Proposition 2. For any s ∈ N, ifH is the disjoint union of two subgraphsH1 andH2, then ex(n, {Ks,s, H-ind}) ≤
O(ex(n, {Ks,s, H1-ind}) + ex(n, {Ks,s, H2-ind}) + n).

Proof. The Kővári–Sós–Turán theorem gives that ex(n,Ks,s) ≤ n2−1/s, which means in particular that any
sufficiently large graph with constant edge density must contain a copy of Ks,s. Let N be such that, for

any N ′ ≥ N , any N ′-vertex graph with at least N ′2

|V (H))|2 many edges must contain Ks,s as a subgraph. We

will show that, for any n, any n-vertex graph G with at least ex(n, {Ks,s, H1-ind})+ ex(n, {Ks,s, H2-ind})+
N |V (H)|n many edges must contain either an induced copy of H = H1 ⊔H2, or a copy of Ks,s.

The proof follows from a simple supersaturation argument. We claim that, if G contains no Ks,s, it must
contain N induced copies of H1 and N induced copies of H2, all of which are vertex disjoint. This holds
because, if we’ve already found at most N copies of H1 and N copies of H2, the subgraph of G induced
by all vertices not included in any of these subgraphs contains at least E(G)−N |V (H1)|n−N |V (H2)|n =
E(G)−N |V (H)|n ≥ ex(n, {Ks,s, H1-ind})+ex(n, {Ks,s, H2-ind}) many edges, and thus we can find another
disjoint copy of either.

Now, suppose for contradiction that G contains no induced copy of H. This means that each of those
copies of H1 must have an edge to each of those copies of H2, since otherwise the pair would induce a copy
of H. Thus, the subgraph induced by all N disjoint copies of H1 and H2 together — which is a graph on
N |V (H)| many vertices — contains at least N2 many edges. By our choice of N , this guarantees that the
graph contains a copy of Ks,s.

Corollary 1. Conjecture 2 ⇐⇒ Conjecture 3.

Proof. As noted, the only connected graph with a single edge is K1,1, in which case we have ex(n,K1,1) =
ex(n, {Ks,s,K1,1-ind}) = 0, so the Conjecture 3 =⇒ Conjecture 2 direction is trivial. To show the reverse
direction, we assume Conjecture 2, and demonstrate Conjecture 3 by contradiction: fix s ∈ N, and let H be
the smallest bipartite graph with at least 2 edges such that ex(n, {Ks,s, H-ind}) ≥ ω(ex(n,H)). H cannot be
connected, since otherwise Conjecture 2 would apply. So, we can split H into two disconnected components
H = H1⊔H2. By Proposition 2, we have ex(n, {Ks,s, H1-ind})+ex(n, {Ks,s, H2-ind})+O(n) ≥ ω(ex(n,H)).
Since H has at least two edges, ex(n,H) ≥ Ω(n), so this implies that either ex(n, {Ks,s, H1-ind}) ≥
ω(ex(n,H)) ≥ ω(ex(n,H1)) or ex(n, {Ks,s, H2-ind}) ≥ ω(ex(n,H)) ≥ ω(ex(n,H2)) — but either of these
would contradict minimality of H.

That is, if Conjecture 1 has any counterexample not of the form “single edge plus some number of
isolated vertices”, it has a connected counterexample. In the next section, we will show that any connected
counterexample implies a counterexample of minimum degree at least 2.

3 Reducing to the 2-core

It is known that Conjecture 1 holds when H is restricted to be a tree — i.e., ex(n, {Ks,s, H-ind}) ≤
O(ex(n,H)) ≤ O(n) whenever H is a tree [SSS23; Hun+24]. For the standard extremal number, it’s easy
to show that degree-one vertices simply do not affect the extremal number: not only is ex(n, T ) ≤ O(n) for
all trees T , but more generally wedging a tree to any (possibly cyclic) graph H can change H’s extremal
number by at most an additive O(n). In this section, we will show how to recover a statement of this form
in the induced setting, too.
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Theorem 1. For any s ∈ N and any graph H, ex(n, {Ks,s, H-ind}) ≤ O(ex(n, {Ks,s, 2-core(H)-ind}) + n).

The first step in the proof is a standard regularization argument, originally due to Erdős and Simonovits.

Lemma 1 ([ES66]; see also [FS13]). For any α ∈ [0, 1], and any n-vertex graph G with at least n1+α many

edges, there exists an induced subgraph G′ ⊆ G with m ≥ n
α−α2

1+α many vertices and at least 2
5m

1+α edges,

such that the maximum degree in G′ is at most a 20 · 21/α2

factor larger than the minimum degree in G′.

The statement in [ES66] does not mention that G′ can be taken to be induced, but as noted in [AZ24]
this is immediate from the proof.

Lemma 1 will allow us to show the key technical tool in our proof of Theorem 1: a supersaturation result
allowing us to find many induced copies of a subgraph that all share only one specified vertex.

Lemma 2. For any H, and any N ∈ N, there exists some constant C such that for any vertex v ∈ V (H)
and any Ks,s-free graph G on C · (ex(|V (G)|, {Ks,s, H-ind}) + |V (G)|) many edges, there exist N induced
copies of H in G such that any pair of copies overlap on exactly one vertex, and that vertex is the image of
v.

Proof. First, note that by Lemma 1, for any C ′, if C is chosen sufficiently large, we can pass to a subgraph
G′ ⊆ G with n vertices and at least C ′ · (ex(n, {Ks,s, H-ind}) + n) many edges, such that G has maximum

degree at most ∆·E(G′)
n and minimum degree at least E(G′)

∆n , for ∆ = 20 · 21/α2

. Now, for some k to be
determined later, consider the following randomized procedure:

i) Choose a uniform random n
k vertices R ⊆ V (G′).

ii) Choose a uniform random vertex u ∈ R.

iii) Declare the procedure to have succeeded if there exists an induced embedding π of H in R such that
π(v) = u.

We claim that, as long as C ′ is sufficiently large, this procedure has reasonably high success probabil-
ity. The first necessary observation is that, with high probability, the graph remains nearly regular upon
subsampling to R.

Claim 1. Except with probability 2−poly(C′), every vertex in R has at least |E(G′)|
2k∆ and at most 2∆·|E(G′)|

k
many neighbours in R.

Proof. For any specific vertex x ∈ V (G′), consider the probability that x has fewer than |E(G′)|
2k∆n neighbours in

R. We know that x has degree at least |E(G′)|
∆n , so this probability is at most the chance that fewer than a 1

2k
fraction of x’s neighbours are chosen to belong to R. Since R is a uniform random 1/k-fraction of all vertices,
a Chernoff bound guarantees that this probability is exponentially small in the size of x’s neighbourhood,
which is at least Ω(C ′). Union bounding over all x ∈ V (G′), this means that the probability that any of

them have fewer than |E(G′)|
2k∆n neighbours in R is exponentially small. The upper bound on neighbourhood

size is identical.

We then observe that, so long as R remains nearly regular, we can find induced copies of H within R
making use of a substantial fraction of the vertices.

Claim 2. If the subgraph induced by R has |E(R)| ≥ 2 · ex(n, {Ks,s, H-ind}), and maximum degree at most

a 4∆2 factor larger than minimum degree, then for at least |V (R)|
8∆2 many vertices u ∈ R, there exists an

induced embedding π of H in R such that π(v) = u.

Proof. Suppose there are fewer than |V (R)|
8∆2 many vertices of R that serve as the image of v under some

embedding of H. Since the graph induced by R has maximum degree at most 4∆2·|E(R)|
|V (R)| , the subgraph

induced by all vertices of R other than those contains at least |E(R)| −
(

|V (R)|
8∆2

)(
4∆2·|E(R)|

|V (R)|

)
= |E(R)|

2 ≥
ex(n, {Ks,s, H-ind}) many edges. So, it must contain an induced copy of H, which must have some vertex
corresponding to v, which is a contradiction since we’ve removed all possible images.
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Together, Claim 1 and Claim 2 guarantee that our random process has success probability at least 1
10∆2

if C is chosen to be sufficiently large in terms of k, since once we condition on an event with probability

going to 1 in C ′ a random vertex in R has at least a |V (R)|
8∆2 chance of leading to success.

But now, note that we could alternatively have performed the procedure in the following order:

i) Choose a uniform random vertex u ∈ V (G′).

ii) Choose a uniform random partition of all other vertices of G into k equal-sized colour classes.

iii) Choose one of the colours uniformly at random to call R.

iv) Declare the procedure to have succeeded if there exists an induced embedding π of H in R ∪ {u} such
that π(v) = u.

Up to an additive difference of 1 in the number of vertices chosen in R, which affects the distribution
negligibly, this process gives the same distribution over R and u as the one originally specified, and so has
the same success probability of at least 1

10∆2 . By averaging, there exists some way to perform steps i and
ii such that the process still has success probability at least 1

10∆2 over step iii. This means that, for some

vertex u ∈ V (G′) and some partition into k colours, at least k
10∆2 of the colour classes contain an induced

copy of H mapping v to u. Since each of these copies are (aside from u) of different vertex colours and hence
disjoint, choosing k = 10∆2N gives the desired statement.

Proof of Theorem 1. Proceeding by induction on the number of edges of H, it suffices to show for all H that
ex(n, {Ks,s, H

+-ind) ≤ O(ex(n, {Ks,s, H-ind) + n), where H+ is obtained from H by adding a single vertex
u, and a single edge (u, v) to some v ∈ V (H). That is, we will show that adding a single degree-1 vertex to
H cannot change its induced extremal number by more than a constant multiplicative factor and an additive
linear factor in n.

By Lemma 2, there exists some C such that any n-vertex graph with at least C · ex(n, {Ks,s, H-ind})
many edges must contain s many copies of H, any pair of which overlap exactly on the vertex corresponding
to v. Let G be a graph with at least 2C · ex(n, {Ks,s, H-ind}) + 2 (s(|V (H)| − 1)s + s(|V (H)| − 1))n many
edges. By repeatedly removing vertices with degree less than half the average, we can find an induced sub-
graph G′ ⊆ G with minimum degree at least C

n ex(n, {Ks,s, H-ind}) + s(|V (H)| − 1)s + s(|V (H)| − 1). Now,
by Lemma 2, we can find induced copies H1, . . . ,Hs of H in G′ that all overlap only on π(v). By our bound
on minimum degree, we know that π(v) has degree at least s(|V (H)| − 1)s + (|V (H)| − 1), and hence has at
least s(|V (H)| − 1)s many neighbours u1, . . . , u(s(|V (H)|−1)s) not contained in any of our identified Hi.

If G′ contains no induced copy of H+, then for every i, j, there must be an edge between ui and some
vertex of Hj \{π(v)}; choose an arbitrary such edge for each i, j. There are only (|V (H)|−1)s many ways to
choose one element of Hj \ {π(v)} for each j, so by pigeonhole principle there must exist a set of s many ui

for which we’ve chosen the exact same s-tuple of neighbours. These vertices and that s-tuple of neighbours
form a copy of Ks,s.

Corollary 2. If H is any bipartite graph of girth at least 2k such that each connected component contains
at most a single cycle, then for any s we have ex(n, {Ks,s, H}) ≤ O(n1+1/k).

Proof. Hunter et al have shown that that ex(n, {Ks,s, C2ℓ) ≤ O(n1+1/ℓ) for all ℓ [Hun+24]. By Theorem 1,
this gives that ex(n, {Ks,s, F ) ≤ O(n1+1/k) for any F whose 2-core is C2ℓ, ℓ ≥ k – in other words, any
bipartite graph of girth at least 2k containing only a single cycle. Then, by Proposition 2, the disjoint union
H of any constant number of such graphs must also have ex(n, {Ks,s, H}) ≤ O(n1+1/k).

4 Control by degeneracy

The results of Section 3 give us a new class of graphs where we have upper bounds on induced extremal
numbers matching those for standard extremal numbers. However, we still have no relationship between
induced and standard extremal numbers in general. Short of a proof of Conjecture 2, it would be useful to
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at least rule out that ex(n, {Ks,s, H-ind}) can be arbitrarily large in terms of ex(n,H). That is, to show
that for every ε there exists a δ such that, for all H, if ex(n,H) ≤ n2−ε, then ex(n, {Ks,s, H-ind}) ≤ n2−δ.
In this section, we will obtain such a result.

The relevant fact is that, while we know no general way of computing extremal numbers, the degeneracy
of H offers a reasonable approximation, giving both lower and upper bounds. Specifically, we know that, for
some constants c > k, for any r and any bipartite H of degeneracy r, Ω(n1−1/kr) ≤ ex(n,H) ≤ O(n1−1/cr).
(The current best known values of c and k are 1/2 and 4, respectively, although it is conjectured that these can
be improved [AKS03; Erd97].) An upper bound on induced extremal numbers in terms of degeneracy would
therefore allow us to constrain the induced extremal number of a graph in terms only of its non-induced
extremal number. In Section 4.1, we will show a bound of the form ex(n, {Ks,s, H-ind}) ≤ O(n2−1/crc),
which will establish some such relationship. To strengthen that relationship, it would be interesting to show
a bound of the form ex(n, {Ks,s, H-ind}) ≤ O(n2−1/cr); in Section 4.2 we discuss partial progress towards
such a stronger quantitative bound.

4.1 Bounding induced extremal numbers in terms of degeneracy

As in the argument for standard extremal numbers, our upper bound relies on the technique of dependent
random choice. In this section, we will be able to use directly the following standard result, whereas in the
next section we will have to unfold its proof to obtain some stronger guarantees:

Lemma 3 ([AKS03], [FS11]). For any r, t ≥ 2, and any n-vertex graph G with at least n2−1/(t3r) many
edges, there exist subsets U1, U2 ⊆ V (G) such that every r-tuple of vertices in U1 has at least n1−1.8/t many
common neighbours in U2, and likewise every r-tuple of vertices in U2 has at least n1−1.8/t many common
neighbours in U1.

We will also make use of the fact that, in a Ks,s-free graph, at most a constant number of vertices are
neighbours with a constant fraction of any sufficiently large vertex set.

Lemma 4. For any ε > 0, any Ks,s-free graph G, and any vertex subset S ⊆ V (G) with |S| ≥ 2s
ε , there

exist at most
(
2s
ε

)s
many vertices v ∈ V (G) such that |N(v) ∩ S| ≥ ε|S|.

Proof. Suppose there exist x =
(
2s
ε

)s
many vertices v ∈ V (G) such that |N(v) ∩ S| ≥ ε|S|. Taking

these vertices along with S gives a bipartite graph with part sizes x and |S| and at least x · ε|S| − s2 =
2sx1−1/s|S|−s2 ≥ s1/sx1−1/s|S|+sx many edges. The asymmetric version of the Kővári–Sós–Turán theorem
guarantees that any such graph must contain a copy of Ks,s [KST54; Hyl58].

In order to find an induced embedding, we will first apply Lemma 3, then use Lemma 4 to show that an
appropriately-chosen random embedding of our pattern graph H in the resulting pair of subsets will be an
induced copy with high probability.

Theorem 2. For any s ∈ N, and any bipartite H of degeneracy r, ex(n, {Ks,s, H-ind}) ≤ O(n2−1/(20r4)).

Proof. Let H be an r-degenerate graph, and let G be a Ks,s-free n-vertex graph with at least n2−1/(20r4)

many edges. Applying Lemma 3 with t = 2.71r, we obtain two vertex subsets U1, U2 ⊆ V (G) such that
every r-tuple in one subset has at least n1−1/1.51r many common neighbours in the other.

Let v1, . . . , v|V (H)| be an ordering of the vertices of H such that, for all i, vi has at most r many neigh-
bours vj with j < i. Such an ordering is guaranteed to exist by the fact that H is r-degenerate. Now, for
any tuple of numbers w = (w1, . . . , w|V (H)|) ∈ [n1−1/1.51r]|V (H)| such that wi ̸= wj for all i ̸= j, we will
define an associated embedding πw : V (H) → V (G). Fix an arbitrary ordering of the vertices in G’s left
and right parts, respectively. For each vi in the left (resp. right) part of H, let πw(vi) be the with vertex
of the common neighbourhood

⋂
j<i : (vi,vj)∈E(H) N(πw(vj)) in the ordering of the right (resp. left) part of

G. Since each vi has at most r earlier neighbours in the embedding, and any r vertices in one part have at
least n1−1/1.51r many common neighbours, the with vertex defined thus will always exist.
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The image of each πw is a homomorphic copy of H: if (vi, vj) ∈ E(H), then (πw(vi), πw(vj)) ∈ E(G),
since whichever of vi and vj is later in the ordering will be chosen from the neighbourhood of the other. We
claim that when w is chosen uniformly at random among all elements of [n1−1/1.51r]|V (H)|, the associated
homomorphic copy of H has nonzero probability of being an induced subgraph.

For an r-tuple u1, . . . , ur of vertices in one of the two parts of V (G), and another vertex v, we say that v
electrocutes u1, . . . , ur if v is adjacent to a large fraction of a prefix of the common neighbourhood of the
u — that is, if |N(v) ∩ A| ≥ 1

100|V (H)|2 · n1−1/1.51r, where A consists of the first n1−1/1.51r many vertices

of
⋂

i N(ui) in the ordering of the other part of V (G) from the ui (note that our dependent random choice
guarantees |

⋂
i N(ui)| ≥ n1−1/1.51r). Call a set T ⊆ V (G) slippery if some r-tuple (u1, . . . , ur) ∈ T r of the

vertices is electrocuted by another vertex v ∈ T , v ̸∈ (u1, . . . , ur).

Claim 3. If n is sufficiently large, and w is chosen uniformly from [n1−1/1.51r]|V (H)|, the image Imπw
(V (H))

is slippery with probability at most 1
100|V (H)|2 .

Proof. We can describe every slippery w as follows:

i) Choose an index i, and indices j1, . . . , jr.

ii) Choose r vertices from V (G) to serve as πw(vj1), . . . , πw(vjr ).

iii) Choose the entries wℓ for ℓ ̸∈ {i, j1, . . . , jr}.
iv) Choose the entry wi, ensuring that πw(vi) electrocutes πw(vj1), . . . , πw(vjr ).

v) Set wj1 , . . . , wjr to be the unique values such that πw(vj1), . . . , πw(vjr ) correspond to the vertices chosen
on step ii.

By upper bounding the number of available choices at each step, we can obtain an upper bound on the
number of slippery w.

i) There are at most |V (H)|r+1 many ways to choose the indices

ii) There are at most nk many ways to choose πw(vj1), . . . , πw(vjr ), where k is the number of distinct
elements appearing among j1, . . . , jr (note that the r-tuple of indices may contain repeated elements).

iii) There are at most (n1−1/1.51r)|V (H)|−k−1 many ways to choose wℓ for ℓ ̸∈ {i, j1, . . . , jr}.
iv) By Lemma 4, so long as n1−1/1.51r ≥ 200s|V (H)|2, there are at most

(
200s|V (H)|2

)s
many vertices

that electrocute πw(vj1), . . . , πw(vjr ).

Overall, this means that the number of slippery w is at most

|V (H)|r+1 · nk · (n1−1/1.51r)|V (H)|−k−1 ·
(
200s|V (H)|2

)s
= (n1−1/1.51r)(|V (H)|−k−1+ k

1−1/1.51r ) · (200s)s |V (H)|2s+r+1

≤ (n1−1/1.51r)|V (H)| · n−( .51r−1
1.51r−1 ) · (200s)s |V (H)|2s+r+1.

Since we know any 1-degenerate H has extremal number O(n), we can assume r > 1, in which case(
.51r−1
1.51r−1

)
> 0. So, for any constant values of s, r, and |V (H)|, for n sufficiently large we have n(

.51r−1
1.51r−1 ) >

100 (200s)
s |V (H)|2s+r+3, which means that the number of slippery w is at most (n1−1/1.51r)|V (H)|

100|V (H)|2 . Since

the total number of w is exactly (n1−1/1.51r)|V (H)|, the slippery tuples represent less than a 1
100|V (H)|2

fraction.

We can now show that any particular non-edge of H is absent in πw(H) with good probability.

Claim 4. Let vi, vj ∈ V (H) be any pair of vertices such that (vi, vj) ̸∈ E(H). If n is sufficiently large, and
w is chosen uniformly from [Cn1−1/r]|V (H)|, then Prw[(πw(vi), πw(vj)) ∈ E(G)] ≤ 1

50|V (H)|2 .
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Proof. We can assume without loss of generality that i < j. Let the tuple u1, . . . , ur contain the neighbours
of vi in H that appear earlier in the degeneracy ordering (repeat a vertex in the tuple if there are fewer than
r such distinct vertices). If we fix random values for w1, . . . , wj−1, this will in particular fix the embeddings
πw(u1), . . . , πw(ur) for all of those neighbours, as well as the embedding πw(vi).

Let A consist of the first n1−1/1.51r many vertices of
⋂

ℓ N(uℓ) in the ordering of the part of V (G)
containing πw(u1), . . . , πw(ur); choosing a random value for wj will correspond to fixing πw(vj) to a uniform
random element of A. By definition, unless π(vi) electrocutes πw(u1), . . . , πw(ur), at most a 1

100|V (H)|2

fraction of the vertices of A are adjacent to π(vi), so conditional on π(vi) not electrocuting πw(u1), . . . , πw(ur)

we have Prwj
[(πw(vi), πw(vj)) ∈ E(G)] ≤ 1

100|V (H)|2 . If π(vi) electrocutes πw(u1), . . . , πw(ur), w is slippery

— so Claim 3 ensures that this occurs with probability at most 1
100|V (H)|2 . By union bound, this means

Prw[(πw(vi), πw(vj)) ∈ E(G)] ≤ 1
100|V (H)|2 + 1

100|V (H)|2 = 1
50|V (H)|2 .

Finally, we note that πw is injective with high probability.

Claim 5. For any i < j ≤ r, we have Prw[πw(vi) = πw(vj)] ≤ 1
n1−1/1.51 .

Proof. When wj is chosen, there are n
1−1/1.51 many options, at most one of which corresponds to πw(vi).

Now, the probability that Imπw(V (H)) fails to be an induced copy of H is by union bound at most∑
i,j

Pr
w
[πw(vi) = πw(vj)]

+

 ∑
i,j : (vi,vj) ̸∈E(H)

Pr[(πw(vi), πw(vj)) ∈ E(G)]


≤ |V (H)|2 · 1

n1−1/1.51
+ |V (H)|2 · 1

50|V (H)|2

≤ 1

25

for sufficiently large n. Since this probability is less than 1, we know in particular that G contains an induced
copy of H.

Corollary 3. For any constant α, if ex(n,H) ≤ O(nα), then ex(n, {Ks,s, H-ind}) ≤ O

(
n

(
2− (2−α)4

320

))
.

Proof. Let r be the degeneracy of H. Since Ω(n1−2/r) ≤ ex(n,H) ≤ O(nα), we must have r ≤ 2
2−α . The

result now follows from ex(n, {Ks,s, H-ind}) ≤ n2−1/(20r4).

4.2 Towards better dependence on degeneracy: forbidding specific edges

The induced extremal number upper bound obtained in Theorem 2 is of the form n2−1/poly(r), whereas for
standard extremal numbers we know a bound of the form n2−1/Θ(r). In the corresponding proof for standard
extremal numbers, it suffices to apply the dependent random choice of Lemma 3 with t = Θ(1), guaranteeing
that every r-tuple has a common neighbourhood of size larger than some constant — however, we took t
much larger in order to guarantee common neighbourhoods of close to linear size.

The reason this was necessary was because our proof was counting “out-of-order”. We described a process
of choosing an embedding that, when followed in degeneracy order, had exactly n1−1/1.51r many choices at
each step. However, in order to bound the number of slippery embeddings, we first had to fix the embed-
dings of the tuple that got electrocuted, and only then could count the number of choices for the vertex that
electrocuted them. If the electrocuter appeared before the electrocutees in the degeneracy order, this meant
that we couldn’t just embed in order, but instead had to fix the images of the electrocutees first, allowing
them n many possibilities each as opposed to n1−1/1.51r.
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One might be interested whether this technical issue can be overcome to show an upper bound of the
form n2−1/Θ(r). In this section, we make partial progress towards that goal, finding copies of the pattern
subgraph which, while not necessarily induced, avoid particular subsets of the pattern graph’s non-edges.
Our first such result recovers bounds of the form n2−1/Θ(r) when only a constant number of H’s non-edges
must be preserved.

Definition 3. For a graph H, and a subset F ⊆ (V (H)×V (H)\E(H)) of “forbidden” edges, let H \(F -ind)
denote the family of graphs H ′ on V (H) such that

• (u, v) ∈ E(H) =⇒ (u, v) ∈ E(H ′), and

• (u, v) ∈ F =⇒ (u, v) ̸∈ E(H ′).

Proposition 3. For all H of degeneracy r, and F ⊆ (V (H) × V (H) \ E(H)) with |F | = f , we have
ex(n, {Ks,s, H \ (F -ind)}) ≤ O(n2−1/(12f+6r)).

Proof. Let V (F ) be the set of vertices with an endpoint in F , noting that |V (F )| ≤ 2f . Consider an n-
vertex Ks,s-free graph G on n2−1/(12f+6r) many vertices. Applying Lemma 3 with t = 1.81, we find vertex
subsets U1, U2 ⊆ V (G) such that any (r+2f)-tuple of vertices in one subset has at least n.001 many common
neighbours in the other. The subgraph of H induced by V (F ) has at most 2f many vertices, and thus
maximum degree at most 2f — so, by the techniques of [Hun+24] we can find an induced copy of that
subgraph. Fix that subgraph as the embedding of V (F ), order the remaining vertices of H in degeneracy
order, and them embed one-at-a-time. Each vertex to be embedded is neighbours with at most r + 2f
already-embedded vertices, so there are at least n.001 many candidates. As long as n is large enough that
n.001 > |V (H)|, this ensures that there is always an option that has not already been used, and so a copy of
H \ (F -ind) can be found.

We also observe that it is possible to forbid all edges between vertices that are close to each other in
degeneracy order.

Theorem 3. Let H be an r-degenerate bipartite graph, and v1, . . . , v|V (H)| be an ordering of the vertices
of H such that, for all indices i, there are at most r many indices j < i with (vi, vj) ∈ E(H). Then, for any

q ∈ N, ex(n, {H \ (F -ind)}) ≤ O(n2−1/(2000q2r)), where F = {(vi, vj) : (vi, vj) ̸∈ E(H) and |i− j| ≤ q}.

To prove Theorem 3, we will need to re-do the analysis of dependent random choice. We are interested
in obtaining something complementary to Lemma 4: we want our sets to be such that, for any r-tuple of
vertices in one set, although few vertices are neighbours with a constant fraction of the tuple’s common
neighbourhood, every vertex in that set is neighbours with at least a somewhat-large fraction of the tuple’s
common neighbourhood.

Lemma 5. For any r, t ≥ 2, and any n-vertex graph G with at least n2−1/(9t2r) many edges, there exist
subsets U1, U2 ⊆ V (G) such that both of the following conditions hold.

• Any r-tuple of vertices (u1, . . . , ur) ∈ Ur
i has a large common neighbourhood — that is, |N(v)∩U3−i| ≥

n1/10 for all v ∈ Ui.

• For any r-tuple of vertices (u1, . . . , ur) ∈ Ur
i , and any other vertex v ∈ Ui, a sizeable fraction of the

common neighbourhood of (u1, . . . , ur) is neighbours with v — that is,
|
⋂

i N(ui)∩U3−i∩N(v)|
|
⋂

i N(ui)∩U3−i| ≥ n−1/t.

Proof. The proof is essentially the same as that of Lemma 3, but we include it in full for completeness.
First, partition V (G) into two parts L and R such that at least half of the edges cross the partition. Then,
choose qL = 3t2r many vertices ℓ1, . . . , ℓqL ∈ L with replacement, and consider their common neighbourhood
A =

⋂
i N(ℓi)

⋂
R. Let X = |A|, let Y be the number of tuples (u1, . . . , up) ∈ Ap such that |

⋂
i N(ui)∩L| <

n1/10, and let Z be the number of tuples (u1, . . . , up, v) ∈ Ap+1 such that
|
⋂

i N(ui)∩L∩N(v)|
|
⋂

i N(ui)∩L| < n−1/t, where

p = r + tr + 2t.

E[X] =
∑
v

(
|N(v) ∩ L|

|L|

)qL

≥ n ·

(
n1−1/(9t2r)

n

)qL

≥ n2/3.
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E[Y ] =
∑

(u1,...,ur)

|
⋂

i N(ui)∩L|≤n1/2

Pr[u1, . . . , up ∈ A] ≤ np ·
(
n1/10

n

)qL

< 1.

To calculate E[Z], we note that Prℓ1,...,ℓqL [u1, . . . , up ∈ A and v ∈ A] ≤ Prℓ1,...,ℓqL [v ∈ A | u1, . . . , up ∈

A] =
(

|
⋂

i N(ui)∩L∩N(v)|
|
⋂

i N(ui)∩L|

)qL
. So, bounding the number of tuples (u1, . . . , up, v) ∈ Lp+1 such that

|
⋂

i N(ui)∩L∩N(v)|
|
⋂

i N(ui)∩L| <

n−1/t by np+1, we obtain

E[Z] ≤ np+1 ·
(
n−1/t

)qL
< 1.

Since E[X − Y − Z] > n2/3, there exists some choice of ℓ1, . . . , ℓqL such that X − Y − Z > n2/3. Fix
A according to this choice of ℓ, and let U1 be obtained from A by removing one vertex from each tuple
(u1, . . . , ur) ∈ Ar such that |

⋂
i N(ui) ∩ L| < n1/2, and one vertex from each tuple (u1, . . . , ur, v) ∈ Ar+1

such that
|
⋂

i N(ui)∩L∩N(v)|
|
⋂

i N(ui)∩L| < n−1/(2r). We are guaranteed that |U1| ≥ n2/3.

Now, choose qR = t(r + 2) many vertices r1, . . . , rqR ∈ U1, and consider their common neighbourhood
B =

⋂
i N(ri) ∩ L. Let Y be the number of tuples (u1, . . . , ur) ∈ Br such that |

⋂
i N(ui) ∩ U1| < n1/10,

and let Z be the number of tuples (u1, . . . , ur, v) ∈ Br+1 such that
|
⋂

i N(ui)∩U1∩N(v)|
|
⋂

i N(ui)∩U1| < n−1/t. By the same

logic as above, we have

E[Y ] ≤ nr ·
(
n1/10

n2/3

)qR

< 1/2,

E[Z] ≤ nr+1 ·
(
n−1/t

)qR
< 1/2.

So, by union bound, there exists a choice of the r1, . . . , rqR such that Y = Z = 0. Set U2 to be the
corresponding value of B.

We claim U1, U2 satisfy the conditions of the statement. The fact that Y = Z = 0 immediately implies
the conditions for vertices in U2. Then, since r + qR = p, for any (u1, . . . , ur) ∈ U1 we have∣∣∣∣∣⋂

i

ui ∩ U2

∣∣∣∣∣ =
∣∣∣∣∣⋂

i

ui ∩

(⋂
i

N(ri) ∩ L

)∣∣∣∣∣ ≥ n1/10,

and for any (u1, . . . , ur, v) ∈ Ur+1
1 , we have

|
⋂

i N(ui) ∩ U2 ∩N(v)|
|
⋂

i N(ui) ∩ U2|
=

|
⋂

i N(ui) ∩ (
⋂

i N(ri) ∩ L) ∩N(v)|
|
⋂

i N(ui) ∩ (
⋂

i N(ri) ∩ L) |
≥ n−1/t.

We can now run a proof strategy similar to that of Theorem 2, since Lemma 5 will let us show that the
number of available embedding options doesn’t grow too much when we embed only a little bit out-of-order.

Proof of Theorem 3. Let G be an n-vertex Ks,s-free graph with at least n2−1/(2000q2r) many edges. We can
apply Lemma 5 with t = 11q to find two parts U1, U2 ⊆ G such that any r-tuple in one part has at least
n1/10 many common neighbours in the other part, and any additional vertex is neighbours with at least an
n−1/11t fraction of that common neighbourhood.

As in the proof of Theorem 2, we now define a distribution on homomorphisms H → G, and show
that a random homomorphism from this distribution is likely to correspond to a copy of H as a sub-
graph without any of the forbidden edges. Once again, we will do so by embedding vertices in degen-
eracy order, choosing an embedding at each step uniformly from a prefix of the list of available can-
didates. However, in this case instead of defining all of these prefixes in terms of fixed, arbitrary or-
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derings of U1 and U2, it will be useful to choose a new, random ordering for each step of the embed-
ding. For any tuple of numbers w = (w1, . . . , w|V (H)|) ∈ [n1/10]|V (H)|, and any tuple of permutations

σ =
(
(σ

(1)
1 , σ

(2)
1 ), . . . , (σ

(1)
|V (H)|, σ

(2)
|V (H)|)

)
∈
(
SU1

× SU2

)|V (H)|
, we define π

(σ)
w : V (H) → V (G) such that, if vi

belongs to the left (resp. right) part of H, then π
(σ)
w (vi) is the with vertex of

⋂
j≤i : (vi,vj)∈E(H) N(vj) ∩ U1

(resp. U2) to appear in the ordering σ
(1)
i (resp. σ

(2)
i ).

We can make a slightly simpler definition of electrocution here, saying that v ∈ Ui electrocutes
u1, . . . , ur ∈ Ui if |

⋂
i N(ui)∩Uj ∩N(v)| ≥ 1

100|V (H)|2 |
⋂

i N(ui)∩Uj |. We’ll also define a version of slipper-

iness that requires indices to be close to each other: say that a tuple of vertices Y = (y1, . . . , y|Y |) ∈ G|Y | is
slippery if there exist (j1, . . . , jr) ∈ [|Y |]r and j∗ ∈ Y \ {j1, . . . , jr} such that yj∗ electrocutes (yj1 , . . . , yjr ),
and also maxi(ji)− j∗ ≤ q.

Claim 6. If n is sufficiently large, w is chosen uniformly from [n1/10]|V (H)|, and σ is chosen uniformly from(
SU1 × SU2

)|V (H)|
, the image Im

π
(σ)
w (V (H))

is slippery with probability at most 1
100|V (H)|2 .

Proof. By union bound, it suffices to show for every particular j1 ≤ · · · ≤ jr and every j∗ with jr − j∗ ≤ q

that the probability of π
(σ)
w (vj∗) electrocuting

(
π
(σ)
w (vj1), . . . , π

(σ)
w (vjr )

)
is at most 1

100|V (H)|r+3 . Fix some

such j1, . . . , jr, j
∗, and also fix any values for w1, . . . , wj∗−1 and σ1, . . . , σj∗−1 — we claim that the electro-

cution probability is low conditioned on any such choices. Note that the probability of electrocution now
depends only on the values of wj∗ , . . . , wjr and σj∗ , . . . , σjr , since indices later than jr have no effect on the
embeddings of earlier vertices.

In order to count the number of embeddings that are slippery at these indices, we will divide into two
types, whose counts we will bound separately. For any i such that j∗ < i ≤ jr, letting b ∈ {1, 2} be the part

of H to which vi belongs, we let Ai =
⋂

ℓ<i : (vℓ,vi)∈E(H)) and ℓ ̸=j∗ N(π
(σ)
w (vℓ)) ∩ Ub be the set of candidates

for π
(σ)
w (vi) at the time of embedding when one ignores the potential requirement to be neighbours with

π
(σ)
w (vj∗).

Case 1: For all i such that j∗ < i ≤ jr, at least n1/10 many vertices of N(π
(σ)
w (vj∗)) appear among the

first 100n1/10+1/11q many vertices of Ai in ordering σ
(b)
i .

In order to bound the probability of electrocution in this case, we can condition on any arbitrary value
of σ. Now, to bound the number possible choices of wj∗ , . . . , wjr , we can do the following:

i) For each i such that j∗ < i ≤ jr in order, choose a value for π
(σ)
w among the first 100n1/10+1/11q many

vertices of Ai in ordering σ
(b)
i .

ii) Choose a value for π
(σ)
w (vj∗) among the vertices that electrocute π

(σ)
w (vj1), . . . , π

(σ)
w (vjr ).

Note that, since σ is fixed, fixing the embeddings π
(σ)
w (vj∗), . . . , π

(σ)
w (vjr ) will uniquely determine wj∗ , . . . , wjr .

In any valid embedding, vi is chosen either from among the first n1/10 many vertices of A (if (vj∗ , vi) ̸∈ E(H)),

or among the first n1/10 many vertices of A ∩ N(π
(σ)
w (vj∗) (if (vj∗ , vi) ∈ E(H)). So, the number of

ways to perform the above process is indeed an upper bound on the number of choices of wj∗ , . . . , wjr

that lead to electrocution in this case. Since, by Lemma 4, there are at most (200s|V (H)|2)s many ver-

tices that electrocute any fixed tuple π
(σ)
w (vj1), . . . , π

(σ)
w (vjr ), the number of ways to perform the above

process is at most
(
100n1/10+1/11q

)jr−j∗ · (200s|V (H)|2)s ≤ n(jr−j∗)/10+(jr−j∗)/11q · (200s|V (H)|2)2s ≤(
n1/10

)jr+1−j∗ · 1
200|V (H)|r+3 for sufficiently large n. So the probability of both belonging to case 1 and

having π
(σ)
w (vj∗) electrocute π

(σ)
w (vj1), . . . , π

(σ)
w (vjr ) is at most 1

200|V (H)|r+3 .
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Case 2: For some i∗ with j∗ < i∗ ≤ jr, fewer than n1/10 many vertices of N(π
(σ)
w (vj∗)) appear among the

first 100n1/10+1/11q many vertices of Ai∗ in ordering σ
(b)
i .

We claim that, electrocution aside, case 2 is very unlikely. Fix any values for wj∗ , . . . , wi∗−1 and

σj∗ , . . . , σi∗−1. By our dependent random choice, we’ve guaranteed that |Ai∗∩N(π
(σ)
w (vj∗))| ≥ n−1/11q ·|Ai∗ |.

So, in expectation over σi∗ there will be at least 100n1/10 many vertices of N(π
(σ)
w (vj∗)) among the first

100n1/10+1/11q many vertices of Ai∗ . By a Chernoff bound, the probability of lying substantially below
this expectation is extremely small. That is, the probability of having fewer than n1/10 many vertices of

N(π
(σ)
w (vj∗)) among the first 100n1/10+1/11q many vertices of Ai∗ is at most the probability of having fewer

than n1/10 many successes in 100n1/10+1/11q flips of an n−1/11q-biased coin, which occurs with probability
o(2n

−0.0001

). So, union bounding over all possible i∗, for n sufficiently large the probability of lying in case 2
is at most 1

200|V (H)|r+3 .

Since cases 1 and 2 are exhaustive, we have upper bounded the probability of π
(σ)
w (vj∗) electrocuting(

π
(σ)
w (vj1), . . . , π

(σ)
w (vjr )

)
by 1

200|V (H)|r+3 + 1
200|V (H)|r+3 = 1

100|V (H)|r+3 .

Once again, we can now say that forbidden edges are unlikely unless the embedding is slippery.

Claim 7. Let vi, vj ∈ V (H) be any pair of vertices such that (vi, vj) ̸∈ E(H), and |i − j| ≤ q. If n is

sufficiently large, w is chosen uniformly from [n1/10]|V (H)|, and σ is chosen uniformly from
(
SU1 ×SU2

)|V (H)|
,

then Prw,σ[(π
(σ)
w (vi), π

(σ)
w (vj)) ∈ E(G)] ≤ 1

50|V (H)|2 .

Proof. Assume without loss of generality i < j. Fix random values for w1, . . . , wj−1 and σ1, . . . , σj−1. Now,

choosing uniform random values for σj and wj will cause π
(σ)
w (vj) to be chosen as a uniform random vertex

of
⋂

ℓ<j : (vℓ,vj)∈E(H) N(vℓ) ∩ Ub, where b ∈ {1, 2} is the index of the part of H to which vj belongs. If the

overall embedding is not slippery, at most a 1
100|V (H)|2 fraction of this set belongs to N(π

(σ)
w (vi)). So, by

Claim 6 we have Prw,σ[(π
(σ)
w (vi), π

(σ)
w (vj)) ∈ E(G)] ≤ 1

100|V (H)|2 + 1
100|V (H)|2 = 1

50|V (H)|2 .

Once again, the probability of π
(σ)
w failing to be injective goes to 0 in n, so union bounding this along

with the probability of any forbidden edge existing gives overall probability strictly less than 1 for large n.
Thus, there exists some copy of H in G as a subgraph that avoids inducing any edge of F .

5 Possible connected counterexamples

In Section 4, we’ve shown an upper bound on ex(n, {Ks,s, H-ind}) in terms of ex(n,H), which would be
interesting to improve by strengthening the quantitative bounds of Theorem 2. However, even the best
possible control by degeneracy one could hope for would not suffice to demonstrate Conjecture 2, because
it’s known the degeneracy does not completely determine standard extremal numbers. One is left with the
question: is Conjecture 2 likely to be true? In this section, for the benefit of the unbelievers, we briefly
discuss a potential source of counterexamples.

The simplest setting to consider would be where s = 2. Recall that ex(n,K2,2) = Θ(n3/2), where the lower
bound is attained by the incidence graph of all points and lines over a finite projective plane PG(2, q) [Bro66].
These projective plane incidence graphs are highly structured; in addition to avoiding K2,2, they may avoid
many other interesting structures. A possible approach to disproving Conjecture 2 would be to find some
subgraph with extremal number o(n3/2) which is nonetheless avoided in induced form by some such family
of incidence graphs.

Indeed, one can find examples of pattern graphs H such that the point-line incidence graph of PG(2, q)
must always contains many copies of H, but where none of the copies are induced. Perhaps the simplest ex-
ample would be the the Heawood graph with one edge deleted. The Heawood graph , which we will denote
Hea, is the incidence graph of the Fano plane (i.e. all points and lines over PG(2, 2)) — let Hea− = Hea \e
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be the Heawood graph with a single edge deleted (note that Hea is edge-transitive, so we need not specify
which edge is removed).

Figure 1: Hea−, the incidence graph of the Fano plane with a single edge deleted. Deleted edge shown
dashed.

Proposition 4. ex(n, {K2,2,Hea− -ind}) = Θ(n3/2).

Proof. A complete quadrangle is a set of 4 points, no 3 of which are colinear, and the 6 lines between each
pair — the diagonals of a complete quadrangle are the 3 additional intersection points of those lines. For
any finite field Fq, we know the diagonals of a complete quadrangle in PG(2, q) will be colinear if and only
if q is a power of 2 [HP82].

Figure 2: A complete quadrangle, with a line between 2 of the 3 diagonal points. The dashed extension of that
line indicates that it passes through the third diagonal if and only if the underlying field has characteristic
2 (in which case the configuration is isomorphic to the Fano plane).

In particular, this means that Hea− cannot appear as an induced subgraph of the point-line incidence
graph of PG(2, 2a) for any a ∈ N: given 7 points and 6 lines corresponding to a complete quadrangle, a line
incident to two of the diagonals must also be incident to the third, thus inducing Hea. So incidence graphs
of PG(2, 2a) give a family of n-vertex graphs with Θ(n3/2) edges avoiding both K2,2 as a subgraph and Hea−

as an induced subgraph.

If we knew that ex(n,Hea−) < o(n3/2), this would therefore be a counterexample to Conjecture 2.
It seems perhaps plausible that Hea− could have a small extremal number: it’s a 2-degenerate graph of
girth 6, and appears as a subgraph (although not necessarily induced) of every complete point-line inci-
dence graph over a finite projective plane. The strongest lower bound we know on its extremal number
is ex(n,Hea−) ≥ Ω(n7/5), obtained by considering a random host graph. It would be quite interesting to
determine tight bounds on the extremal number of Hea−, and thus determine whether or not it represents
a counterexample to Conjecture 2, however this may be a difficult task: there are remarkably few graphs
for which the true Turán exponent is known, with the techniques involved typically quite specialized to the
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Figure 3: Two graphs H where the bound ex(n, {K2,2, H-ind}) = Θ(n3/2) can be obtained from incidence
geometry theorems: the Pappus graph (left), and the Desargues graph (right), each with a single deleted edge
(denoted by a dashed line). Pappus’s theorem and Desargues’s theorem, respectively, ensure that neither
can appear as an induced subgraph of PG(2, q) for any q, since the deleted edge will always be present.

particular graph in question.

The Heawood graph is, of course, far from the only case of such a structure: there are many more
complicated theorems demonstrating that, in some particular incidence configuration, 3 points must be
colinear [Ric95; FP23]. Such theorems will allow us to find subgraphs which appear in all projective plane
incidence graphs, but can be avoided in induced form (see Figure 3 for two additional examples). Conjecture 2
would hold that all such graphs have extremal number Ω(n3/2); evidence for or against that prediction could
give intuition as to whether Conjecture 2 is likely to be true.
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[FS13] Zoltán Füredi and Miklós Simonovits. “The history of degenerate (bipartite) extremal graph
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