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1 Introduction

The complexity class CL is defined as the set of decision problems solvable by a machine with O(log(n)) bits
of “clean” workspace (that starts initialized with all 0s as usual), and an additional poly(n) bits of “dirty”
workspace that starts arbitrarily initialized, and must be returned to the initial configuration at the end of
computation. (Here, n is the length of the input, to which the algorithm has read-only access.) You can
think of this as a process you’ve allocated a small amount of memory on your computer, but have allowed
to arbitrarily mess up the contents on rest of your hard drive as long as it puts everything back when it’s
done. The original motivation for this model was to formalize the intuition that dirty space is useless — but
the surprising discovery was that it does appear to be helpful sometimes!
Here, I’ll tell you about CL algorithms for two problems we don’t know how to solve without the dirty space.
The first is a super elegant new algorithm by CL pros Ted and James for solving reachability (i.e. determining
whether there’s a path between a given pair of vertices) in directed graphs [CP25]. The second is a variant
of the algorithm in the original CL paper, which evaluates “log depth threshold circuits” [BCKLS14].

2 CL algorithm for reachability in in directed graphs

Suppose you have a read-only representation of a directed graph on n vertices. Concretely, let’s say the vertex
set corresponds to the numbers {1, . . . , n}, and the graph representation just consists of an arbitrarily-ordered
list of pairs (i, j), representing that there is an edge from i to j1. If you want to test whether there is a path
from vertex 1 to vertex n, this is generally pretty easy to do: you can just run a breadth first (or depth first,
whatever) search out of vertex 1 and see if you hit vertex n. However, this approach requires a large amount
of available space: to do BFS, you need to keep track of whether each vertex has already been visited or
not, so (on top of the read-only graph representation) the algorithm needs a workspace at least n bits large.
A big open question is whether this problem can be solved with a workspace of size only O(log n). Here, we
will see that we can solve it with only O(log n) bits of clean workspace, so long as we are also given a large
amount of dirty workspace.

The approach is as follows: we divide up the dirty space into n “registers”, one for each vertex. Let’s say
these registers are each r bits long, for some big r we’ll decide on later. For every i, we’ll think of the ith
register as representing some number xi mod 2r. Note that each xi starts as some arbitrary number, and
we have to reset them to the same number at the end.

I’m now going to describe some operation we could perform on these registers if we so desired. Let’s
call it “stirring the pot”. The procedure is: iterate through all of the edges of the graph (in the order they
appear in the input), for each edge (i, j) replacing the value xj with the new value xi + xj (mod 2r). See
Figure 1 for an example.

An important fact about this process is that it is reversible: if we were to instead iterate through the
edges in the opposite order, and subtract the in-endpoint’s register from the out-endpoint’s register each

1If you’re just worried about how much workspace you need and not worried about runtime, basically any reasonable ways
of representing your graph turn out to be equivalent.
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Figure 1. An example of “stirring the pot”. Here, our registers are mod 32.
Steps progress from left to right, then top to bottom. (The order in which
edges are processed is arbitrary — again, we can just let this be determined
by the order they appear in the input. All that matters is that it’s some
fixed order.)

time, we would exactly undo a single stirring of the pot. So if all we’re doing to our dirty space is stirring,
as long as we remember how many times we’ve stirred we will definitely be able to reset it at the end.

Some of you may now be asking: how on earth could this operation actually be a useful thing to do?
That’s indeed a fair question. The answer is: we’re going to try stirring in two different ways and seeing if
they give different results. First, suppose we just took the initial configuration and stirred the pot n times
in a row. This will mess around with the register in some weird way, and eventually leave us with some

number x
(stirred)
i in the ith register. Sure. But now, let’s unstir everything and do it again — but this time,

before our n rounds of stirring, we’ll add 1 to x1. Now, things will evolve in some different way, and we’ll

end up with different values x̃
(stirred)
i for each vertex.

The crucial point is this: if there was no path from vertex 1 to vertex n, then x
(stirred)
n and x̃

(stirred)
n

should be exactly the same, since there’s no route for x1 to ever influence xn. On the other hand, if there is
a path, then after n rounds of stirring, eventually this 1 added to the 1st vertex will manage to propagate
its way down to the nth vertex, resulting in some positive value being added to xn on top of what would
have happened in the original stirring. This bonus value need not be 1 of course — it will be something
depending on the number of paths between them and the order in which we processed the edges. However,
you can check that it will be at least 1, and at most (say) 2n

3

. So if we take r > n3, this ensures that we

will have x
(stirred)
n ̸= x̃

(stirred)
n as long as there is no path from vertex 1 to vertex n.
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So now the problem just becomes to determine whether x
(stirred)
n = x̃

(stirred)
n or not. This is not too hard

to do. We can’t fit either of these values in our workspace, so we can’t store one and compare them directly.

But what we can do is: stir n times, remember the highest order bit of x
(stirred)
n , unstir n times, add 1 to x1,

stir n times, check if the highest order bit of x̃
(stirred)
n equals that stored value, then unstir and subtract 1

from x1 again. If we repeat this for the second highest order bit, third highest order bit, etc, we can check
whether they agree on every bit (and hence whether there is a path from vertex 1 to vertex n) without ever
having to store either of them in entirety in our clean space. Yay!

3 CL algorithm for evaluating log-depth threshold circuits

I think the previous story gives a good taste of what dirty space can do. But if you want some more, I can
also tell you how to evaluate TC1 circuits. Here, TC1 refers to polynomial-size, logarithmic-depth, circuits of
exact value gates. (An exact value gate outputs 1 if exactly t of its inputs are 1, and 0 otherwise, for some
specified value t2). The set of problems solvable with such circuits is a pretty good first-order approximation
of the set of problems we know how to solve in CL3.

So then, let’s get right into it! Say you’ve been handed (on read-only input) some circuit of depth
d = O(log n) consisting of S = poly(n) many exact value gates, as well as values for the input wires of
the circuit. You want to compute the value of the output wire. At your disposal is O(logn) bits of clean
workspace and poly(n) bits of dirty workspace. What are you going to do?

Our procedure will consist of a long sequence of individual reversible “steps”, each of which modifies the
dirty space but doesn’t read or store anything to the clean space. So the only clean space we’ll need is the
amount needed to perform a single individual one of these steps, plus enough for a counter to remember
which step we’re on. In particular, this means that as long as we can perform each step in logarithmic space,
and we only take at most poly(n) steps (otherwise the counter is too big), the algorithm runs in CL4.

The basic approach will be a type of recursion: we’ll argue that if we can compute the outputs of all gates
on level ℓ of the circuit in a small number of steps, then we can compute the outputs of all gates on level
ℓ+ 1 with a larger number of steps. Of course, we can’t actually store all of those outputs in the clear. So
instead, our notion of “computing” the output of a gate will consist of adding its output value to a portion
of the dirty space. I’ll describe what I mean by this as follows.

Let’s once again break up the dirty space into a whole bunch of registers, each of which we’ll think of
as holding a number mod S. For each gate g, we’ll have some associated register OUTg, which is supposed
to correspond to g’s output. Now, we’ll say that a sequence of steps “toggles g” if, regardless of the initial
state of OUTg prior to those steps, its value is incremented by 1 (mod S) if gate g outputs 1 (and otherwise
OUTg remains unchanged). The meat of the algorithm comes from the following fact:

Lemma 3.1. Suppose there is a sequence P of reversible steps such that, after running P , we toggle all
gates on layer ℓ of the circuit. Then, there is another sequence of at most 2|P | + 3S steps that toggles all
gates on layer ℓ+ 1 of the circuit.

First, let’s quickly note why this lemma is enough to let us win. Our circuit has depth d, and we can
easily toggle the values of the input wires in a single step since we have them all written down in our read-

2A more standard definition of TC1 would be to use majority gates, which check if at least half of the inputs are 1. This
is equivalent up to polynomial size blowup and constant depth blowup. To simulate a majority gate using exact value gates,
we use (#of input wires)/2 exact value gates checking if the number of 1s is exactly (#of input wires)/2, (#of input wires)/2+
1, . . . , (#of input wires). Then, we use another exact value gate to test if exactly one of those gates returns a 1.

3Although there has been a fair amount of recent progress finding other problems in CL — see e.g. [AM25; AAV25;
AFMSV25].

4A reasonable concern you might raise is the following: even if this sequence of steps exists, it might not be the case that I
can in small space figure out what I’m supposed to do on the ith timestep given just i. Fortunately, if you actually look at the
procedure we describe it doesn’t do anything super crazy, and so it’s certainly “logspace uniform” in the sense that you can
figure out the ith step to perform given the number i with logarithmic workspace.
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only input. So, recursively applying Lemma 3.1 will give us a sequence of O(S · 2d) = poly(n) instructions
that result in the output layer of the circuit being toggled. If we first record the least significant bit of OUTg
for the final output gate in our clean space, then perform this sequence of instructions, we can determine
if it changed after toggling. Then, we can run the sequence of instructions in reverse, undoing them all
and resetting the dirty space to its initial configuration. So, without further ado, let’s go ahead and prove
Lemma 3.1!

Proof of Lemma 3.1. In addition to OUTg, we’ll also associate to each gate a bunch of extra helper registers

HELPER
(1)
g , . . . , HELPER

(S)
g . Our sequence of steps will be as follows:

i) For each gate g on layer ℓ + 1 of the circuit, compute the sum (mod S) of the output registers
corresponding to all of g’s inputs. Letting i be this sum, replace register OUTg’s value with OUTg −
HELPER

(i)
g (mod S).

ii) Run the sequence of steps P to toggle everything on layer ℓ.

iii) For each gate on layer ℓ+ 1, again compute the sum of the output registers corresponding to all of g’s
inputs. Subtract t from this sum (where g is an exactly t gate), take it mod S, and call that value j.

Add 1 to HELPER
(j)
g (mod S).

iv) Undo P , un-toggling layer ℓ.

v) Once more, for each gate g add up the output registers of all its inputs and call this sum i. Replace

OUTg’s value with OUTg + HELPER
(i)
g (mod S).

First, some bookkeeping. We ran P twice, and otherwise performed only 3 steps per gate on level ℓ+ 1.
Each of these steps just consisted of computing a sum of a bunch of registers in the clean space, and then
looking up the value of a register and adding something to it. This can easily be done with O(logn) clean
workspace. Also, as each step is just an addition or subtraction, we can reverse the whole process to reset if
desired. So assuming this sequence does in fact toggle level ℓ+ 1, we’ve won.

Now, what have we done here exactly? Well, observe that if exactly t of the input gates for a given gate
g evaluate to 1, then once we toggle the registers on level ℓ, the sum of g’s input registers will increase by
t. So, the value of i on steps i) and v) will be exactly the same as the value of j on step iii). So, we will

subtract off HELPER
(i)
g , then increment HELPER

(i)
g by 1 before adding it back again — all in all successfully

incrementing OUTg by 1. On the other hand, if some other number of g’s inputs evaluate to 1, then we will

have i ̸= j, so we will add and subtract the same value of HELPER
(i)
g and leave OUTg unchanged. ■

4 Final notes

These are cute algorithms! But I think on some deep level we still don’t exactly understand why they work.
Nobody really knows what all we should expect to be able to do with dirty space or how powerful we should
expect CL to be. That’s part of why I think this is a super exciting area to work on! Go forth and prove new
theorems. But before you go, let me just tell you a couple of the most important things we know about CL:

i) The power of CL remains unchanged if you allow the algorithm to use randomness [CLMP25], use
nondeterminism [KMPS25], or incorrectly reset a constant number of the dirty bits [GJST24].

ii) We know anything in CL can be solved by a randomized algorithm in expected polynomial time [BCKLS14].
But we don’t know how to show that CL ⊆ P. The best containment we know is in a somewhat exotic
superclass of P called “LOSSY”, which captures the power of compression arguments [CLMP25].

iii) In fact, there is some oracle relative to which CLO = EXPTIMEO [CGMPS25].

iv) Thinking about CL can help even when you don’t have dirty space — see e.g. the Cook–Mertz tree evalu-
ation algorithm [CM24], which enabled simulation of TIME[T ] multi-tape TMs in SPACE[

√
T log T ] [Wil25].

For a more in-depth survey, I very highly recommend the one by Ian Mertz, which helped get me into this
area 2 years ago [Mer+23]!
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