Winning Guess Who?: A Friendly
Introduction to Information Theory

Ellen Zhang, Nathan Sheffield

IAP 2024

GUESS WHO?

]
PN Tl e EHE!IAIMIII

nnnnn Davesh Richard | Andrew

Figure: MIT Math Department Edition

» Is your person in Applied Mathematics?

» Does your person’s name come alphabetically after “insert
name’?

N
o1
@

GUESS WHO?

What if you know your opponent favors certain characters, and
are more likely to choose them?

| Alexander Lisa Michael

Philippe Paul
. A

Figure: How many questions do I need to ask for this distribution?

ENTROPY

Entropy gives us a way to quantify the minimal number of
questions on average.

» Given random variable X with probability mass function

p(x),
== p(x)logy p(x

xeX

» Entropy measures the minimal amount of information
required to describe X, in bits.

» Each bit is like a question.

ENTROPY
What is the entropy of professor X given the distribution

Philippe Paul Gigliola
L A A

=—> px)logp(x

xeX

2 2 42 42 50 50 .

Interpretation: I need to ask at least 1.48 questions on average.

KRAFT INEQUALITY

Are you Max's advisor?
Has Nathan taken

a class from you?

Philpe.
Do you specialize in
combinatorics?

PhD at MIT el

Alexander Lisa Michael Paul

Figure: Guess Who? strategy visualized as a tree

KRAFT INEQUALITY

Z 21 < 1

xXeEX

Figure: 3", 27/ =1/2+1/4+1/16 +1/16 +1/16 + 1/16 = 1

KRAFT INEQUALITY

Z zfl(x) <1
xXeEX

Proof.

» Walk down tree, choosing uniform random child each time
> Probability of ending on a given person x is 2~/(*)
» These events are disjoint

KRAFT INEQUALITY

For integer function [achieving) —lx) < 1, there’s a

corresponding guessing strategy.

xeX

Proof.
Embed into the tree greedily from the top down.

KRAFT INEQUALITY

For integer function [achieving) —lx) < 1, there’s a

corresponding guessing strategy.

xeX

Proof.
Embed into the tree greedily from the top down.

{1,3,3,3,4,4}

YES NO

KRAFT INEQUALITY

For integer function [achieving) —lx) < 1, there’s a

corresponding guessing strategy.

xeX

Proof.
Embed into the tree greedily from the top down.

{3,3,3,4,4}

YES NO

KRAFT INEQUALITY

For integer function [achieving) —lx) < 1, there’s a

corresponding guessing strategy.

xeX

Proof.
Embed into the tree greedily from the top down.

{4,4}

KRAFT INEQUALITY

For integer function [achieving) —lx) < 1, there’s a

corresponding guessing strategy.

xeX

Proof.
Embed into the tree greedily from the top down.

{

SHANNON CODING

Goal: Choose integers [; to minimize) _ p;l;, given) | 27l <1,

SHANNON CODING
Goal: Choose integers [; to minimize) _ p;l;, given) | 27l <1,

Lower Bound: Remove integrality constraint; use Lagrange

multipliers.
v (> pi) =av (32

SHANNON CODING

Goal: Choose integers [; to minimize) _ p;l;, given) | 27l <1,

Lower Bound: Remove integrality constraint; use Lagrange

multipliers.
v (> pi) =av (32

pi = —Aln(2)27"
A= —1/In(2), pi =27

SHANNON CODING
Goal: Choose integers [; to minimize) _ p;l;, given) | 27l <1,

Lower Bound: Remove integrality constraint; use Lagrange

multipliers.
v (> pi) =av (32

pi = —Aln(2)27"
A= —1/In(2), pi =27

szl—zpl IOng = (X)

SHANNON CODING
Goal: Choose integers [; to minimize) _ p;l;, given) | 27l <1,

Lower Bound: Remove integrality constraint; use Lagrange

multipliers.
v (Z pili> — AV (Z 2-“)

pi = —AIn(2)27"
A= —1/In(2), pi =27

szl—zpl IOng = (X)

Upper Bound: Round up; [; = [—logp;].

SHANNON CODING
Goal: Choose integers [; to minimize) _ p;l;, given) | 27l <1,

Lower Bound: Remove integrality constraint; use Lagrange

multipliers.
v (Z pili> — AV (Z 2-“)

pi = —AIn(2)27"
A= —1/In(2), pi =27

szl—zpl IOng = (X)

Upper Bound: Round up; [; = [—logp;].

> pili=> pil—logpl <1+ pi(—logpi) = H(X) + 1

HUFFMAN CODING

An efficient way to assign binary codes to each outcome of X
by continuously combining the two smallest probabilities.

2

2% 2%

2%,2%,4%,42%, 50%

HUFFMAN CODING

An efficient way to assign binary codes to each outcome of X
by continuously combining the two smallest probabilities.

AN

2% 2% 2% 2%

4%,4%,42%,50%

HUFFMAN CODING

An efficient way to assign binary codes to each outcome of X
by continuously combining the two smallest probabilities.

2% 2% 2% 2%

8%, 42%,50%

HUFFMAN CODING

An efficient way to assign binary codes to each outcome of X
by continuously combining the two smallest probabilities.

2% 2% 2% 2%

50%, 50%

HUFFMAN CODING

An efficient way to assign binary codes to each outcome of X
by continuously combining the two smallest probabilities.

2% 2% 2% 2%

The average length of the code is) p;l; ~ 1.66 bits which is
close to the entropy H(X) = 1.48 bits.

HUFFMAN CODING

Shannon’s Source Coding Theorem: Entropy H(X) is the
minimal average length that is theoretically possible. Huffman
Coding is very close to this limit.

Theorem

Huffman Coding is optimal. That is, the average length > . pil; is
minimal relative to all other codes.

CANONICAL CODES

Assume that X takes on m discrete values, and that
pr=p2 = . 2 Pm-
Lemma

There exists an optimal code, called a cananical code, that satisfies
the following properties:
1. The lengths are ordered inversely with the probabilities (i.e., if
Pj > Pk then l] <.
2. The two longest codewords have the same length.

3. Two of the longest codewords differ only in the last bit and
correspond to the two least likely symbols.

CANONICAL CODES

Lemma (Part 1)

The lengths are ordered inversely with the probabilities (i.e., if p; > py
then l] < Zk.

An optimal code minimizes average length >, pil;.

If p; > px but [; > I, then it is not optimal since we can swap the
codewords and achieve a lower average length.

Thus the lengths must be ordered inversely with the
probabilities for an optimal code.

CANONICAL CODES

Lemma (Part 2)

The two longest codewords have the same length.

Consider a possible tree

p5

CANONICAL CODES

Lemma (Part 2)

The two longest codewords have the same length.

Consider a possible tree

pS5

Figure: Trimming

CANONICAL CODES

Lemma (Part 3)

Two of the longest codewords differ only in the last bit and correspond
to the two least likely symbols.

CANONICAL CODES

Lemma (Part 3)

Two of the longest codewords differ only in the last bit and correspond
to the two least likely symbols.

p2

p3
p4

p5

Figure: Swapping

HUFFAMN CODE OPTIMALITY

Huffman Code achieves minimum expected length.

» Assume that Huffman Coding is optimal for any
distribution on m — 1 values.

» Consider any distribution on m values ordered so that
p1=p22 ... 2 Pm-

HUFFAMN CODE OPTIMALITY

Huffman Code achieves minimum expected length.

» Assume that Huffman Coding is optimal for any
distribution on m — 1 values.

» Consider any distribution on m values ordered so that
p1=p22 ... 2 Pm-

Consider optimal code for m.
guys; WLOG in canonical form

P3 P4

HUFFAMN CODE OPTIMALITY

Huffman Code achieves minimum expected length.

» Assume that Huffman Coding is optimal for any
distribution on m — 1 values.

» Consider any distribution on m values ordered so that
p1=p22 ... 2 Pm-

) . Merging the two lowest-probability
Consider opt!mal C°d§ for m guys into 1, we must be left with a valid code,
guys; WLOG in canonical form with cost OPT(py, P2, p3 + Pa) +P3 + Dy

p1 p1

P3 +Pa

P3 P4

HUFFAMN CODE OPTIMALITY

Huffman Code achieves minimum expected length.

» Assume that Huffman Coding is optimal for any
distribution on m — 1 values.
» Consider any distribution on m values ordered so that
pr=2p22 - 2 Pm
Merging the two lowest-probability

Consider optimal C°d§ for m guys into 1, we must be left with a valid code,
guys; WLOG in canonical form with cost OPT(py, pa, ps + pa) + D3 + P4

By induction, Huffman coding
achieves OPT(py, 2, Ps + P1)
after merging, so is optimal in
general.

P1 P1 ‘ |

P3 +Pa

p2 pz w
P3 P4

KL DIVERGENCE

This is all assuming that I know my opponent’s true
distribution p(x). What if I believed it was g(x)? Then my
expected length under Shannon Coding is not optimal.

KL DIVERGENCE

D(plg) = Exp log ’%

KL DIVERGENCE

_ p(x)
D(p|lq) = Ex~plog PES)

What I thought your distribution was:

o | — 1 | r &l
Alexander Lisa Michael Paul
i i i 0 |

Philippe
|

)
Gigliola
L

i &

What it actually was:

20% 20% 15% 15% 15% 15%
D(plla) = .2 l0g(2/5) + .2 log(.2/42)
+4* 15 log(.15/02)

= 1.27 bits

KL DIVERGENCE

True distribution is p(x) but I construct Shannon Code using

q(x):
H(p) + D(pllg) < Epl(x) < H(p) + D(pllq) +1

KL DIVERGENCE

H(p) + D(pllq) < Eyl(x) < H(p) + D(p|lq) +1

Proof.

Zp [log -‘<1+Zp log

KL DIVERGENCE

H(p) + D(pllq) < Eyl(x) < H(p) + D(p|lq) +1

Proof.

Eyl(x) = Zp(x) [log q_x-‘ <1+ Zp log

X

:Z logzg +Zp log—+1

2

41/53

KL DIVERGENCE

H(p) + D(pllq) < Eyl(x) < H(p) + D(p|lq) +1

Proof.

Zp [log -‘<1+Zp log
:Z log +Zp log—+1

2

= D(pll9) +H(P) +1

GAME THEORY [NICA, 2016]

Suppose you're playing against another person. You have n
possibilities remaining for their character, and they have m
remaining for yours. You really want to beat them.

GAME THEORY [NICA, 2016]

Suppose you're playing against another person. You have n
possibilities remaining for their character, and they have m
remaining for yours. You really want to beat them.

» If [log,(m)] < log,(n), you should take a risk and try to
eliminate all but 2L'°220M~1 possibilities

» Otherwise, play it safe and eliminate [1/2|

RESTRICTED QUESTION SPACE

Does your person belong to the following set:
-~ {...}?

You're not playing the game right, Nathan! Why
can't you just ask normal questions?

N

Figure: The truly visionary will never be without their critics.

RESTRICTED QUESTION SPACE

Alright wise guy, what counts as a
-

normal question™?

If you really can't figure that out for yourself, here's
a list of traits each character has. Just ask questions
like "Does your character have [trait]". Is that so hard?

Figure: I'm not gonna let the man [my younger brother] tell me what
to do [ask me to play this game in good faith]!

IS THAT SO HARD? YES.

Input:
» Set of X of items (characters)
» List of traits for each x € X
» Distribution X over X
» Goal value k

Output:
Does there exist a guessing strategy, only making guesses of the
form “does the item have trait T”, with

E,. x[# of guesses until x is uniquely identified] < k?

IS THAT SO HARD? YES.

Known NP-complete problem: Exact Cover by 3-Sets (X3C)
Input:

» List of items in the universe

» Collection of 3-element sets of items

Output:
Does there exist a collection of those sets such that every item is
contained in exactly one?

48/53

IS THAT SO HARD? YES.

B = big number (say, 1002'%0)

7 "families” of characters,
each with B elements

B1E)
O

Figure: The characters involved in our reduction

one special family

. ®

49/53

IS THAT SO HARD? YES.

distribution chooses a uniform
member of the other families
with probability n?° /B

DAD
DD

Figure: The distribution used in our reduction (could be modified to
use uniform)

distribution chooses

a uniform member of
special family with
probability 1 — n?°/B

IS THAT SO HARD? YES.

Traits:
- each character has a unique trait

- each family has a unique trait,
except the special family

- each other trait is associated with
3 different families, encoding a
chosen instance of X3C

Figure: The allowed traits in our reduction

IS THAT SO HARD? YES.

Analysis:

- B is so large that it is never optimal
to start checking individual characters
until you've fully determined family

- Special family is almost always right,
but can't rule out the others until a set
has captured each of them

- If exists exact cover, can doin n/3
questions. Otherwise, need n/3 + 1.

-Setk=B/2+n/3

CONCLUSION

Thank you to Max for mentoring us, and to DRP for support!

53/53

