
1/53

Winning Guess Who?: A Friendly
Introduction to Information Theory

Ellen Zhang, Nathan Sheffield

IAP 2024



2/53

GUESS WHO?

Figure: MIT Math Department Edition

▶ Is your person in Applied Mathematics?
▶ Does your person’s name come alphabetically after ’insert

name’?



3/53

GUESS WHO?
What if you know your opponent favors certain characters, and
are more likely to choose them?

Figure: How many questions do I need to ask for this distribution?



4/53

ENTROPY

Entropy gives us a way to quantify the minimal number of
questions on average.
▶ Given random variable X with probability mass function

p(x),
H(X) = −

∑
x∈X

p(x) log2 p(x)

▶ Entropy measures the minimal amount of information
required to describe X, in bits.

▶ Each bit is like a question.



5/53

ENTROPY

What is the entropy of professor X given the distribution

H(X) = −
∑
x∈X

p(x) log p(x)

= −
(

4 · 2
100

log
2

100
+

42
100

log
42
100

+
50
100

log
50

100

)
≈ 1.48 bits

Interpretation: I need to ask at least 1.48 questions on average.



6/53

KRAFT INEQUALITY

Figure: Guess Who? strategy visualized as a tree



7/53

KRAFT INEQUALITY

∑
x∈X

2−l(x) ≤ 1

Figure:
∑

x∈X 2−l(x) = 1/2 + 1/4 + 1/16 + 1/16 + 1/16 + 1/16 = 1



8/53

KRAFT INEQUALITY

∑
x∈X

2−l(x) ≤ 1

Proof.

▶ Walk down tree, choosing uniform random child each time
▶ Probability of ending on a given person x is 2−l(x)

▶ These events are disjoint



9/53

KRAFT INEQUALITY

For integer function l achieving
∑

x∈X 2−l(x) ≤ 1, there’s a
corresponding guessing strategy.

Proof.
Embed into the tree greedily from the top down.



10/53

KRAFT INEQUALITY

For integer function l achieving
∑

x∈X 2−l(x) ≤ 1, there’s a
corresponding guessing strategy.

Proof.
Embed into the tree greedily from the top down.

{1, 3, 3, 3, 4, 4}



11/53

KRAFT INEQUALITY

For integer function l achieving
∑

x∈X 2−l(x) ≤ 1, there’s a
corresponding guessing strategy.

Proof.
Embed into the tree greedily from the top down.

{3, 3, 3, 4, 4}



12/53

KRAFT INEQUALITY

For integer function l achieving
∑

x∈X 2−l(x) ≤ 1, there’s a
corresponding guessing strategy.

Proof.
Embed into the tree greedily from the top down.

{4, 4}



13/53

KRAFT INEQUALITY

For integer function l achieving
∑

x∈X 2−l(x) ≤ 1, there’s a
corresponding guessing strategy.

Proof.
Embed into the tree greedily from the top down.

{}



14/53

SHANNON CODING

Goal: Choose integers li to minimize
∑

pili, given
∑

2−li ≤ 1.



15/53

SHANNON CODING

Goal: Choose integers li to minimize
∑

pili, given
∑

2−li ≤ 1.

Lower Bound: Remove integrality constraint; use Lagrange
multipliers.

∇
(∑

pili
)
= λ∇

(∑
2−li

)



16/53

SHANNON CODING

Goal: Choose integers li to minimize
∑

pili, given
∑

2−li ≤ 1.

Lower Bound: Remove integrality constraint; use Lagrange
multipliers.

∇
(∑

pili
)
= λ∇

(∑
2−li

)
pi = −λ ln(2)2−li

λ = −1/ ln(2), pi = 2−li



17/53

SHANNON CODING

Goal: Choose integers li to minimize
∑

pili, given
∑

2−li ≤ 1.

Lower Bound: Remove integrality constraint; use Lagrange
multipliers.

∇
(∑

pili
)
= λ∇

(∑
2−li

)
pi = −λ ln(2)2−li

λ = −1/ ln(2), pi = 2−li∑
pili =

∑
pi(− log pi) = H(X)



18/53

SHANNON CODING

Goal: Choose integers li to minimize
∑

pili, given
∑

2−li ≤ 1.

Lower Bound: Remove integrality constraint; use Lagrange
multipliers.

∇
(∑

pili
)
= λ∇

(∑
2−li

)
pi = −λ ln(2)2−li

λ = −1/ ln(2), pi = 2−li∑
pili =

∑
pi(− log pi) = H(X)

Upper Bound: Round up; li = ⌈− log pi⌉.



19/53

SHANNON CODING

Goal: Choose integers li to minimize
∑

pili, given
∑

2−li ≤ 1.

Lower Bound: Remove integrality constraint; use Lagrange
multipliers.

∇
(∑

pili
)
= λ∇

(∑
2−li

)
pi = −λ ln(2)2−li

λ = −1/ ln(2), pi = 2−li∑
pili =

∑
pi(− log pi) = H(X)

Upper Bound: Round up; li = ⌈− log pi⌉.∑
pili =

∑
pi⌈− log pi⌉ ≤ 1 +

∑
pi(− log pi) = H(X) + 1



20/53

HUFFMAN CODING

An efficient way to assign binary codes to each outcome of X
by continuously combining the two smallest probabilities.

2%, 2%, 4%, 42%, 50%



21/53

HUFFMAN CODING

An efficient way to assign binary codes to each outcome of X
by continuously combining the two smallest probabilities.

4%, 4%, 42%, 50%



22/53

HUFFMAN CODING

An efficient way to assign binary codes to each outcome of X
by continuously combining the two smallest probabilities.

8%, 42%, 50%



23/53

HUFFMAN CODING

An efficient way to assign binary codes to each outcome of X
by continuously combining the two smallest probabilities.

50%, 50%



24/53

HUFFMAN CODING

An efficient way to assign binary codes to each outcome of X
by continuously combining the two smallest probabilities.

The average length of the code is
∑

pili ≈ 1.66 bits which is
close to the entropy H(X) = 1.48 bits.



25/53

HUFFMAN CODING

Shannon’s Source Coding Theorem: Entropy H(X) is the
minimal average length that is theoretically possible. Huffman
Coding is very close to this limit.

Theorem
Huffman Coding is optimal. That is, the average length

∑
i pili is

minimal relative to all other codes.



26/53

CANONICAL CODES

Assume that X takes on m discrete values, and that
p1 ≥ p2 ≥ ... ≥ pm.

Lemma
There exists an optimal code, called a cananical code, that satisfies
the following properties:

1. The lengths are ordered inversely with the probabilities (i.e., if
pj > pk then lj ≤ lk.

2. The two longest codewords have the same length.
3. Two of the longest codewords differ only in the last bit and

correspond to the two least likely symbols.



27/53

CANONICAL CODES

Lemma (Part 1)

The lengths are ordered inversely with the probabilities (i.e., if pj > pk
then lj ≤ lk.

An optimal code minimizes average length
∑

i pili.

If pj > pk but lj > lk, then it is not optimal since we can swap the
codewords and achieve a lower average length.

Thus the lengths must be ordered inversely with the
probabilities for an optimal code.



28/53

CANONICAL CODES

Lemma (Part 2)

The two longest codewords have the same length.

Consider a possible tree



29/53

CANONICAL CODES

Lemma (Part 2)

The two longest codewords have the same length.

Consider a possible tree

Figure: Trimming



30/53

CANONICAL CODES

Lemma (Part 3)

Two of the longest codewords differ only in the last bit and correspond
to the two least likely symbols.



31/53

CANONICAL CODES

Lemma (Part 3)

Two of the longest codewords differ only in the last bit and correspond
to the two least likely symbols.

Figure: Swapping



32/53

HUFFAMN CODE OPTIMALITY

Huffman Code achieves minimum expected length.
▶ Assume that Huffman Coding is optimal for any

distribution on m − 1 values.
▶ Consider any distribution on m values ordered so that

p1 ≥ p2 ≥ ... ≥ pm.



33/53

HUFFAMN CODE OPTIMALITY

Huffman Code achieves minimum expected length.
▶ Assume that Huffman Coding is optimal for any

distribution on m − 1 values.
▶ Consider any distribution on m values ordered so that

p1 ≥ p2 ≥ ... ≥ pm.



34/53

HUFFAMN CODE OPTIMALITY

Huffman Code achieves minimum expected length.
▶ Assume that Huffman Coding is optimal for any

distribution on m − 1 values.
▶ Consider any distribution on m values ordered so that

p1 ≥ p2 ≥ ... ≥ pm.



35/53

HUFFAMN CODE OPTIMALITY

Huffman Code achieves minimum expected length.
▶ Assume that Huffman Coding is optimal for any

distribution on m − 1 values.
▶ Consider any distribution on m values ordered so that

p1 ≥ p2 ≥ ... ≥ pm.



36/53

KL DIVERGENCE

This is all assuming that I know my opponent’s true
distribution p(x). What if I believed it was q(x)? Then my
expected length under Shannon Coding is not optimal.



37/53

KL DIVERGENCE

D(p||q) = Ex∼p log
p(x)
q(x)



38/53

KL DIVERGENCE

D(p||q) = Ex∼p log
p(x)
q(x)



39/53

KL DIVERGENCE

True distribution is p(x) but I construct Shannon Code using
q(x):

H(p) + D(p||q) ≤ Epl(x) < H(p) + D(p||q) + 1



40/53

KL DIVERGENCE

H(p) + D(p||q) ≤ Epl(x) < H(p) + D(p||q) + 1

Proof.

Epl(x) =
∑

x

p(x)
⌈
log

1
q(x)

⌉
< 1 +

∑
x

p(x) log
1

q(x)



41/53

KL DIVERGENCE

H(p) + D(p||q) ≤ Epl(x) < H(p) + D(p||q) + 1

Proof.

Epl(x) =
∑

x

p(x)
⌈
log

1
q(x)

⌉
< 1 +

∑
x

p(x) log
1

q(x)

=
∑

x

p(x) log
p(x)
q(x)

+
∑

x

p(x) log
1

p(x)
+ 1



42/53

KL DIVERGENCE

H(p) + D(p||q) ≤ Epl(x) < H(p) + D(p||q) + 1

Proof.

Epl(x) =
∑

x

p(x)
⌈
log

1
q(x)

⌉
< 1 +

∑
x

p(x) log
1

q(x)

=
∑

x

p(x) log
p(x)
q(x)

+
∑

x

p(x) log
1

p(x)
+ 1

= D(p||q) + H(p) + 1



43/53

GAME THEORY [NICA, 2016]
Suppose you’re playing against another person. You have n
possibilities remaining for their character, and they have m
remaining for yours. You really want to beat them.



44/53

GAME THEORY [NICA, 2016]
Suppose you’re playing against another person. You have n
possibilities remaining for their character, and they have m
remaining for yours. You really want to beat them.

▶ If ⌈log2(m)⌉ < log2(n), you should take a risk and try to
eliminate all but 2⌊log2(m)−1⌋ possibilities

▶ Otherwise, play it safe and eliminate ⌊n/2⌋



45/53

RESTRICTED QUESTION SPACE

Figure: The truly visionary will never be without their critics.



46/53

RESTRICTED QUESTION SPACE

Figure: I’m not gonna let the man [my younger brother] tell me what
to do [ask me to play this game in good faith]!



47/53

IS THAT SO HARD? YES.
Input:
▶ Set of X of items (characters)
▶ List of traits for each x ∈ X
▶ Distribution X over X
▶ Goal value k

Output:
Does there exist a guessing strategy, only making guesses of the
form “does the item have trait T”, with

Ex←X[# of guesses until x is uniquely identified] ≤ k?



48/53

IS THAT SO HARD? YES.
Known NP-complete problem: Exact Cover by 3-Sets (X3C)
Input:
▶ List of items in the universe
▶ Collection of 3-element sets of items

Output:
Does there exist a collection of those sets such that every item is
contained in exactly one?



49/53

IS THAT SO HARD? YES.

Figure: The characters involved in our reduction



50/53

IS THAT SO HARD? YES.

Figure: The distribution used in our reduction (could be modified to
use uniform)



51/53

IS THAT SO HARD? YES.

Figure: The allowed traits in our reduction



52/53

IS THAT SO HARD? YES.



53/53

CONCLUSION

Thank you to Max for mentoring us, and to DRP for support!


