The PCP Theorem

Alek, Andrei, Nathan Mentor: Jonathan

MIT DRP

2023

OUTLINE

- ► Hardness of approximation
- Statement of theorem
- ► Constraint satisfaction problems
- ► PCP proof:
 - Preprocessing
 - ► Gap Amplification
 - Alphabet reduction
- ► Proof-checking interpretation of PCP theorem

Unsatisfiable 3SAT formula:

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (x_1 \lor x_2 \lor x_4) \land (x_2 \lor \overline{x}_3 \lor \overline{x}_4)$$

Unsatisfiable 3SAT formula:

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (x_1 \lor x_2 \lor x_4) \land (x_2 \lor \overline{x}_3 \lor \overline{x}_4)$$

Satisfying assignment for 9/10 clauses:

$$x_1 = \text{FALSE}$$
 $x_2 = \text{TRUE}$
 $x_3 = \text{TRUE}$
 $x_4 = \text{FALSE}$

Another unsatisfiable 3SAT formula:

$$(x_1 \lor x_1 \lor x_1) \land (x_2 \lor x_2 \lor x_2) \land (x_3 \lor x_3 \lor x_3) \land (x_4 \lor x_4 \lor x_4) \land (\overline{x}_1 \lor \overline{x}_1 \lor \overline{x}_1) \land$$
$$(\overline{x}_2 \lor \overline{x}_2 \lor \overline{x}_2) \land (\overline{x}_3 \lor \overline{x}_3 \lor \overline{x}_3) \land (\overline{x}_4 \lor \overline{x}_4 \lor \overline{x}_4) \land (x_1 \lor x_1 \lor x_1) \land (\overline{x}_1 \lor \overline{x}_1 \lor \overline{x}_1)$$

Satisfying assignment for 5/10 clauses:

$$x_1 = \text{FALSE}$$

 $x_2 = \text{FALSE}$
 $x_3 = \text{TRUE}$
 $x_4 = \text{TRUE}$

A 3SAT instance has $gap \ \varepsilon$ if any assignment violates an ε fraction of constraints.

Goal: ε -approximate 3SAT i.e. want an algorithm that is

Complete:

ACCEPTs satisfiable formulas

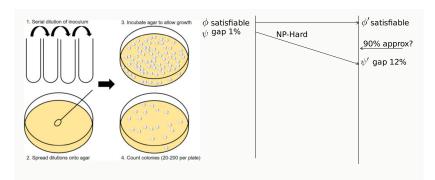
Sound:

REJECTs formulas with gap $\geq \varepsilon$.

PCP THEOREM

Theorem

It is NP-hard to 90%-approximate **3SAT**, because we can efficiently transform **3SAT** instances to **3SAT** instances with gap 12%.



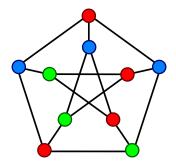
Constraint satisfaction problems ($qCSP_W$)

Definition (qCSP_W)

q-local constraint system over alphabet of size W

Example:

- ▶ 3COLOR: 2-local (constraint graph), alphabet $\{R, G, B\}$.
- ► 3SAT: 3-local, alphabet {0,1}.



PROOF OUTLINE

small gap \rightarrow big gap

Lemma (Constraint Expander)

 $qCSP_2 \rightarrow 2CSP_2$ with constraint graph forming an expander. Minor decay of gap and increase in number of constraints.

Lemma (Gap Amplification)

 ε -gap 2CSP $_2 \rightarrow 6\varepsilon$ -gap 2CSP $_W$ Increase in alphabet size and increase in number of constraints.

Lemma (Alphabet Reduction)

 $2CSP_W \rightarrow qCSP_2$ Minor decay of gap and increase in number of constraints.

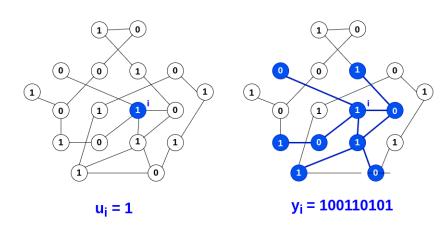
CONSTRAINT EXPANDER

- ► If a variable occurs in too many constraints we make copies of the variable and add constraints dictating that the copies agree.
- ► Next, we make the graph *d*-regular
- ► Next we add trivial constraints corresponding to self loops and edges of an expander so that the constraint graph becomes an expander

Ideas:

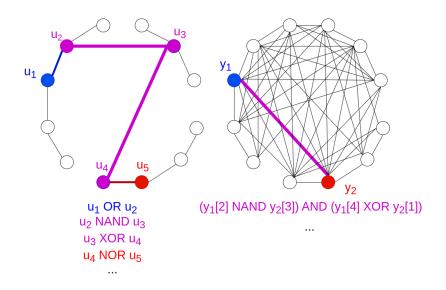
- ► Encode many old variables in a single new variable
- Encode many old constraints in a single new constraint
- ► Ensure that many violated constraints in the old variables correspond to even more violated constraints in the new ones

Variables y_i in the new problem encode values for all variables reachable within distance $t + \sqrt{t}$ from i in the original graph.



For every path of length 2t + 2 we have a constraint in G' between the two endpoints ensuring that all constraints in the overlap are met.





Soundness:

Satisfying assignment in G can be directly translated to satisfying assignment in G'.

Completeness:

- ► At least ϵ -fraction of the constraints are violated in the original problem
- ▶ Want to show 6ϵ -fraction of paths in the new problem contain violated constraints
- ► Issue: variables in the new problem may not give consistent assignments to the original variables

Majority assignments:

- ► For each old variable, consider the value assigned to it by the majority of the new variables at the end of length-*t* walks
- ▶ Majority assignment violates at least an ϵ fraction of the old constraints
- ▶ Denote by *S* the set of old constraints violated by the majority assignments

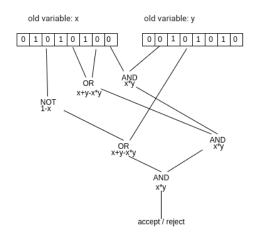
Bounding expected number of violated constraints:

- ► Consider the $\frac{\sqrt{t}}{100}$ interval in the middle of a random (2t+2)-path
- $\left(t + \frac{\sqrt{t}}{100}\right)$ -length paths are distributed very similarly to t-length paths
- ▶ ⇒ randomly chosen (2t + 2) path contains $\Omega(\epsilon \sqrt{t})$ elements of S in expectation

Bounding probability of violated constraint:

- ▶ A bound on the probability of a randomly chosen (2t + 2)-path containing violated old constraints can be obtained from lower bounds on expectation and upper bounds on variance
- We just proved $\Omega(\epsilon\sqrt{t})$ lower bound on expectation
- $O(\epsilon\sqrt{t})$ upper bound on variance comes from expander properties
- ightharpoonup randomly chosen new constraint has $\Omega(\epsilon\sqrt{t})$ chance of being violated; choosing large constant t makes this always at least 6ϵ

ALPHABET REDUCTION



Constraints:

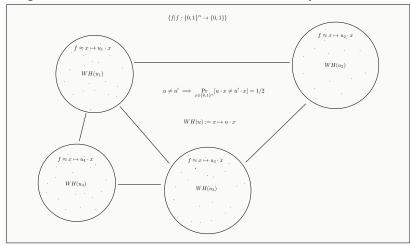
$$\sum_{i,j} \alpha_{i,j,k} x_i y_j = b_k$$
$$(x \otimes y)_{i,j} = x_i \cdot y_j$$
$$A(x \otimes y) = b$$

ALPHABET REDUCTION

- ► Try 1: make variable for each bit in old variables
 - binary alphabet!
 - not very locally checkable
- ► Try 2: "Walsh Hadamard Code"
 - \blacktriangleright *WH*(*u*) = $x \mapsto x \cdot u$; write down truth table
 - $|u| = n \implies |WH(u)| = n2^n$
 - \blacktriangleright $u \neq u'$ not locally checkable: u, u' may only differ on one bit
 - ► $WH(u) \neq WH(u')$ locally checkable: WH(u), WH(u') differ on 1/2 of their bits
 - ▶ But, we can't efficiently check if a string is a WH-code
- ► Try 3: Approximately a WH-code
 - easy to check!

ALPHABET REDUCTION

Error correction: if a state is "nearly linear", it is close to a unique WH code, which we can determine easily [BLR]



ALPHABET REDUCTION: PUTTING IT ALL TOGETHER

New Variables: Variable for each bit of

$$WH(u_1), WH(u_2), WH(u_1 \circ u_2), WH((u_1 \circ u_2) \otimes (u_1 \circ u_2))$$

for each old variable u_1 , u_2 and each constraint on u_1 , u_2 .

Soundness: encode old satisfying assignment **Completeness:**

- 1. Check that terms are valid WH-codes (i.e. nearly linear)
- 2. Check that terms are appropriate concatenations / tensors
- 3. Check that solution solves the quadratic equations

proof idea: check random subsets

PROOF SYSTEM INTERPRETATION OF PCP THEOREM

- ► *Proof system*: prover and verifier
- ► *Soundness*: there is an honest prover that convinces verifier
- ► *Completeness*: no crooked prover can trick verifier

- ► Probabilistically checkable proof:
- ► PCP(r,q) : O(r) random bits, access to O(q) bits of proof $NP = PCP(\log n, 1)$

ACKNOWLEDGEMENTS

- ► Thanks to Irit Dinur for developing the proof we follow here, and for elucidating it in lecture notes
- Thanks to Arora and Barak for clear coverage in their textbook
- ► Thanks to Jonathan for fantastic mentorship

