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OUTLINE

Hardness of approximation
Statement of theorem
Constraint satisfaction problems
PCP proof:

» Preprocessing
» Gap Amplification
» Alphabet reduction

>
>
>
>

» Proof-checking interpretation of PCP theorem



APPROXIMATING 3SAT
Unsatisfiable 3SAT formula:

<X1 VX7 \/X3) VAN (x1 VXo \/f3)/\ (xl VXo \/X3) A (fl VXo \/X3)/\ (x1 VXo \/73)/\

(fl \/XQ\/E3) /\(71 \/72\/X3) /\(fl VfQ\/E_O,) /\(x1 VX7 \/X4) A (XZ\/E:; \/f4)



APPROXIMATING 3SAT
Unsatisfiable 3SAT formula:

(X1 \/XQ\/X3)/\(X1 \/x2Vf3)/\(x1 \/fz\/X[;)/\(fl \/X2\/JC3)/\(X1 \/fz\/fg)/\

(fl \/XQ\/fg,)/\(fl VX2 \/Xg) /\(fl VXo \/fg) /\(X1 VX7 \/X4) A (Xz\/fg \/f4)

Satisfying assignment for 9/10 clauses:

X] = FALSE
Xp = TRUE
X3 = TRUE

X4 = FALSE



APPROXIMATING 3SAT
Another unsatisfiable 3SAT formula:

(X1 \%4 \/X1)/\(XQ\/xz\/JCz)/\(x3\/X3\/X3)/\(X4\/X4\/JC4)/\(E1 VXq \/fl)/\

(fz \/fz\/fg)/\(fg, VX3 \/fg) /\(Y4Vf4\/f4) /\(X1 VX1 \/X1)/\ (fl VX \/fl)

Satisfying assignment for 5/10 clauses:

X] = FALSE
Xp = FALSE
X3 = TRUE

x4 = TRUE



APPROXIMATING 3SAT

A 3SAT instance has gap ¢ if any assignment violates an ¢
fraction of constraints.

Goal: e-approximate 3SAT
i.e. want an algorithm that is

Complete:

ACCEPTs satisfiable formulas
Sound:

REJECTs formulas with gap > «.



PCP THEOREM

Theorem

It is NP-hard to 90%-approximate 3SAT, because we can efficiently
transform 3SAT instances to 3SAT instances with gap 12%.

1. Serial diluion of inoculum 3. ncubate sgar o alow gowth b satisfiable ¢’ satisfiable

1 9ap 1% NP-Hard
90% approx?
7' gap 12%

2. Spread dilutions onto agar 4. Count colonies (20-200 per plate)




CONSTRAINT SATISFACTION PROBLEMS (QCSP )
Definition (QqCSP,)

g-local constraint system over alphabet of size W
Example:

» 3COLOR: 2-local (constraint graph), alphabet {R, G, B} .
» 3SAT: 3-local, alphabet {0, 1}.



PROOF OUTLINE

small gap — big gap

qCSP, — 2CSP, with constraint graph forming an expander.
Minor decay of gap and increase in number of constraints.

e-gap 2CSP, — 6¢-gap 2CSPy
Increase in alphabet size and increase in number of constraints.

2CSPy — qCSP,
Minor decay of gap and increase in number of constraints.



CONSTRAINT EXPANDER

» If a variable occurs in too many constraints we make
copies of the variable and add constraints dictating that
the copies agree.

» Next, we make the graph d-regular

» Next we add trivial constraints corresponding to self loops
and edges of an expander so that the constraint graph
becomes an expander



GAP AMPLIFICATION

Ideas:
» Encode many old variables in a single new variable
» Encode many old constraints in a single new constraint

» Ensure that many violated constraints in the old variables
correspond to even more violated constraints in the new
ones



GAP AMPLIFICATION

Variables y; in the new problem encode values for all variables
reachable within distance ¢ + v/t from i in the original graph.

ui=1 y; = 100110101



GAP AMPLIFICATION

For every path of length 2t 4+ 2 we have a constraint in G’
between the two endpoints ensuring that all constraints in the
overlap are met.
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GAP AMPLIFICATION
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GAP AMPLIFICATION

Soundness:
Satisfying assignment in G can be directly translated to
satisfying assignment in G'.

Completeness:

» At least e-fraction of the constraints are violated in the
original problem

» Want to show 6e-fraction of paths in the new problem
contain violated constraints

» Issue: variables in the new problem may not give
consistent assignments to the original variables



GAP AMPLIFICATION

Majority assignments:

» For each old variable, consider the value assigned to it by
the majority of the new variables at the end of length-t
walks

» Majority assignment violates at least an e fraction of the
old constraints

» Denote by S the set of old constraints violated by the
majority assignments



GAP AMPLIFICATION

Bounding expected number of violated constraints:

» Consider the % interval in the middle of a random

(2t +2)-path
> <t + W\/(E)) -length paths are distributed very similarly to
t-length paths

» —> randomly chosen (2f + 2) path contains Q(ev/f)
elements of S in expectation



GAP AMPLIFICATION

Bounding probability of violated constraint:

» A bound on the probability of a randomly chosen
(2t + 2)-path containing violated old constraints can be
obtained from lower bounds on expectation and upper
bounds on variance

» We just proved Q(e\/t) lower bound on expectation

» O(ev/'t) upper bound on variance comes from expander
properties

» —> randomly chosen new constraint has Q(ev/#) chance
of being violated; choosing large constant f makes this
always at least 6¢



ALPHABET REDUCTION
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ALPHABET REDUCTION

» Try 1: make variable for each bit in old variables
» binary alphabet!
» not very locally checkable
» Try 2: “Walsh Hadamard Code”
» WH(u) = x — x - u; write down truth table
> |ul=n = |WH(u)| = n2"
» u # u’ not locally checkable: u, u’ may only differ on one bit
> WH(u) # WH(u') locally checkable: WH (u), WH (1) differ
on 1/2 of their bits
> But, we can't efficiently check if a string is a WH-code
» Try 3: Approximately a WH-code
» easy to check!



ALPHABET REDUCTION

Error correction: if a state is “nearly linear”, it is close to a
unique WH code, which we can determine easily [BLR]

{f1f: {0,1}" = {0,1}}

‘ upd = P fec#ud=1/2

WH(u) =z u -z




ALPHABET REDUCTION: PUTTING IT ALL TOGETHER

New Variables: Variable for each bit of
WH (u1), WH (u3), WH(uy o up), WH((u1 o up) @ (11 o up))

for each old variable 14, u, and each constraint on uq, u5.

Soundness: encode old satisfying assignment
Completeness:

1. Check that terms are valid WH-codes (i.e. nearly linear)
2. Check that terms are appropriate concatenations / tensors

3. Check that solution solves the quadratic equations

proof idea: check random subsets



PROOF SYSTEM INTERPRETATION OF PCP THEOREM

v

Proof system: prover and verifier

» Soundness: there is an honest prover that convinces verifier

v

Completeness: no crooked prover can trick verifier

v

Probabilistically checkable proof:
PCP(r,q) : O(r) random bits, access to O(g) bits of proof
NP = PCP(logn,1)

v
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