
Complexity of Art Gallery Variants

Nathan Sheffield, Alek Westover

September 6, 2024

1 Introduction

The art gallery problem is a classic question in computational geometry: given a description of a polygon,
compute the minimum number of guard points needed such that every point in the interior of the polygon
is visible from one of guard points. This problem has been long known to be NP-hard [LL86], but it’s not
clear it’s in NP – the guard points are allowed to have arbitrary real coordinates, so it’s not obvious that
an optimal placement must have a short witnessing description. In fact, a few years ago it was shown by
Abrahamsen, Adamaszek, and Miltzow that the art gallery problem is complete for ∃R [AAM18], a class
somewhere between NP and PSPACE that seems to be the natural resting place for a number of computational
geometry problems. In this project, we analyze the complexity of several variants of the art gallery problem.

1.1 The Art Gallery Problem

The PointGuard Problem is defined as follows.
Input: Polygon P , number of guards g.
Output: Is there a placement of g points that can see all of P?
The polygon is represented as a list of n vertices (in the order in which they are connected in the polygon)
which are pairs of B bit binary numbers in

{
i · 2−B | i ∈ [2B ]

}
. Thus, the input size is poly(n,B). Formally,

a point x in the polygon can see another point y in the polygon if the line segment joining x, y is completely
contained within the polygon. An example Art Gallery is drawn in Figure 1.

Figure 1: An Art Gallery

A classic result of Chvatal states that it is always possible to place ⌊n/3⌋ guards on vertices to guard any
art gallery. In fact, one can compute a set of ⌊n/3⌋ vertex guards that guards the polygon efficiently using
an algorithm based on triangulating P . However, if we want to minimize the number of guards can’t just use
vertices, as shown by Figure 2 and Figure 3. This is a first hint that the problem might be harder than NP.
A second hint is that there are some polygons where it is necessary to place guards at irrational coordinates,
e.g.,

√
2. Abrahamsen, Adamaszek, and Miltzow prove in [AAM18] that PointGuard is ∃R-complete, a

complexity class that will be described shortly which is widely believed to strictly contain NP.

1



Nathan Sheffield, Alek Westover

Figure 2: One guard suffices, but need Ω(n) vertex guards

Figure 3: One guard suffices, but need Ω(n) vertex guards

1.2 Our Results on the Complexity of Art Gallery Variants

In this note we analyze the complexity of several variants of the Art Gallery Problem. Several of our variants
involve guards that are not points but other geometric objects, namely line segments, circles, and squares.
The guard shapes must be placed completely within P , and we say that a guard can see a point x if there
is a line segment connecting point x to some point y in the guard’s shape.

In Section 2 we discuss the class ∃R, share the proof that PointGuard ∈ ∃R, and give a (very) high level
overview of the proof that PointGuard is ∃R-hard.

In Section 3 we consider the LineGuard problem: “Is a polygon P guardable by g line guards?” We adapt
the proof that PointGuard ∈ ∃R proof in an interesting and somewhat involved way to show:

Theorem 1.1. LineGuard ∈ ∃R.

In Section 4 we use similar techniques as in Section 3, but now to show that two problems are in NP. First,
we analyze PaintGuard. In PaintGuard you are given a polygon P and a set of n points called paintings
in the polygon. Your goal is to determine whether it is possible to place g point guards and see all the
paintings; you are not required to see the rest of the art gallery. We prove

Theorem 1.2. PaintGuard ∈ NP.

Next, we consider a problem called PromiseGuard. In PromiseGuard, you are given a polygon P , a guard
number g and a value ε. Your goal is to distinguish between two cases: (1) P can be guarded by g point
guards. (2) P can’t even be guarded by g radius ε circle guards. We prove

Theorem 1.3. PromiseGuard ∈ NP.

Finally, in Section 5 we consider a 3-dimensional variant of LineGuard. We show

Theorem 1.4. 3DLineGuard is ∃R-hard.

Remark 1.5. Although all proofs presented in sections Section 3, Section 4, Section 5 are our own, we are
not extremely familiar with the literature and it is quite possible that some of these results have been proven
elsewhere.

2



Nathan Sheffield, Alek Westover

2 Preliminaries

In this section we present background on the complexity class ∃R and give an overview of Abrahamsen,
Adamaszek, and Miltzow’s proof that Art Gallery is ∃R-complete. Having a basic high-level understanding
of why Art Gallery is ∃R-complete will be important for the rest of our paper because (1) we use similar ideas
to show ∃R containment of line guard and shape guard, and (2) our proof that 3D line guard is hard is not
a black box reduction from Art Gallery: it relies on the details of Abrahamsen, Adamaszek, and Miltzow’s
proof.

2.1 The Complexity Class ∃R
The ∃R complexity class is a natural complexity class for many geometric problems. Informally, an ∃R for-
mula is set of polynomial inequalities. More precisely, an ∃R formula is formed by using variables X1, . . . , Xn

along with the symbols ∨,∧,¬, 0, 1,+,−, ·, (, ),=, <,≤ to form a proposition Φ(X1, . . . , Xn), and then taking
the proposition

∃X1, X2, . . . , Xn ∈ R | Φ(X1, . . . , Xn).

The language ∃R is the set of all problems that can be reduced in polynomial time to an ∃R formula. Clearly
NP ⊆ ∃R, and a classic but quite nontrivial result of Canny states that ∃R ⊆ PSPACE [Can88]. A widely
believed conjecture is:

Conjecture 2.1. NP ⊊ ∃R.

Why is ∃R potentially larger than NP?
Intuitively, problems in NP have short certificates, but the variables we quantify over in ∃R can be real,
and it seems hard to write down X1, . . . , Xn efficiently a way that makes checking Φ(X1, . . . , Xn) easy to do
efficiently. An important thing to note about ∃R formulas is that, while we can encode constants other than
0, 1 by adding 1 to itself many times and then dividing, the length in bits of the numerator and denominator
of a rational fraction will influence the formula length. It is also worth noting that you can force variables to
take irrational values (although the values will always be algebraic). For instance, the formula: ∃x | x ·x = 2,
forces x =

√
2.

A simple example of an ∃R formula is a formula for checking if an intersection of half-planes with rational
slopes is empty. To build such a formula we first note that the determinant can be used to check if one vector
is to the left or to the right of another vector. For rational numbers a1, b1, a2, b2 we define the proposition
ΦL((a1,b1),(a2,b2))(x, y) for checking if point x, y lies above the line that passes through (a1, b1), (a2, b2) as
follows:

(a2 − a1)(y − b1)− (x− a1)(b2 − b1) ≥ 0.

Now, given several half-planes we can write a formula of the form

∃x, y | ΦL((a1,b1),(a2,b2)) ∧ ΦL((a3,b3),(a4,b4)) ∧ ΦL((a5,b5),(a6,b6)) (1)

and this formula is satisfied by some x, y ∈ R if and only if the intersection of half-planes described by the
formula is non-empty.

2.2 Art Gallery is in ∃R
The following simple lemma will be relevant to several of our arguments in the remainder of the paper, so
we include it here. We say that a set of regions R′ is a refinement of a set of regions R if every region in
R′ is a subset of a region in R.

Lemma 2.2. Fix point x in polygon P . Let X be the set of vertices of P unioned with {x}. Let L be the
set of lines joining two vertices of X. Let R be the set of faces in the arrangement induced by L. Let R′ be
any refinement of R. Fix region R ∈ R′. If x can see any point inside of R then x can see all of R.

Proof. Suppose for contradiction that x can see part of region R, but not all of region R. Then there
must be something part of the polygon inside of region R partially obstructing x’s view. But any such
obstacle partially obstructing x’s view must have an endpoint in R, which would have caused R to be further
subdivided.

3



Nathan Sheffield, Alek Westover

Now we are prepared to prove that PointGuard ∈ ∃R.

Theorem 2.3. Let P, g be an instance of the art gallery problem, where P is a polygon with n vertices,
each of which has rational coordinates represented by at most B bits. There is a polynomial time algorithm
that turns P, g into an ∃R formula Φ such that the ∃R formula has length poly(n,B) and such that the Φ
is satisfiable if and only if P can be guarded by g guards.

Proof. First we show how to turn an art gallery problem into a simple formula which is not quite in the ∃R
class of formulas, but is quite close. Specifically, the problem will be that it has a ∀ quantifier. The formula
is as follows:

Ψ := ∃x1, y1, . . . , xk, yk∀px, py, INSIDE-POLYGON(px, py) =⇒
k∨

i=1

SEES(xi, yi, px, py).

Now we expand out the INSIDE-POLYGON and SEES sub-formulas. INSIDE-POLYGON can be imple-
mented by triangulating the polygon and doing an OR over the triangles in the triangulation the proposition
that point px, py is in each triangle. To check containment in a triangle we can use the formula described ear-
lier (1) for checking intersection of half planes. We simply orient the edges of the triangle counter-clockwise
and then check if the point is to the left of each of these edges. The INSIDE-POLYGON predicate has length
O(nB).

For the SEES predicate we insert we take an AND over every pair of consecutive edges, of a predicate
that checks that e1, e2 doesn’t block the line of sight between px, py and xi, yi; this can be done with a
constant number of determinants per check.

Eliminating the ∀ quantifier To convert the formula Ψ into an ∃R formula we create a witness set :
a small subset of points such that if these points are guarded then it guarantees that the entire polygon is
guarded. An important note is that the witness set will be a function of the guard locations. That is, we
will first quantify over the guard locations, then quantify over the points in the witness set, and then check
that the points in the witness set satisfy some constraints.

To construct the witness set, we will use Lemma 2.2. Specifically, we let X denote the set of corners of
the polygon union with the set of guard locations. We define L as the set of all lines joining two points in X.
We define R to be the set of faces of the arrangement induced by L. And finally we define C to be the set of
centroids of regions R ∈ R. C will serve as the witness set. The key property that we have by Lemma 2.2 is
that if the guards can see all points in the witness set, then they can see the entire polygon. So, instead of
quantifying over all points in the polygon, we can take an AND over this finite (in fact polynomially sized)
witness set.

To turn this into an ∃R formula, we essentially will create variables to represent the vertices of the
arrangement, add constraints to check that the variables are set to vertices of the arrangement, then add
variables to represent centroids of regions, and add constraints to check that these variables are set to
centroids. We omit a description of the detailed mechanics of how to do this as it is not particularly
illuminating. These details can be found in [AAM18].

2.3 Art Gallery is ∃R hard

The first hint that the art gallery problem might be harder than NP-hard is that there are polygons where
it is necessary to place the guards at irrational points; see Figure 4.

This indicates that, if the problem is in NP, an encoding of the witness will have to be more complicated
than just giving a list of guard points as rational numbers. Generally, when this is the case, a more
complicated encoding that shows NP containment is unlikely to exist – in the words of Till Miltzow, “if you
see something that smells like ∃R, its almost always ∃R”. However, actually proving ∃R hardness can be
very tricky – we will give only a rough overview of the approximately 70 page paper showing the reduction
[AAM18].

The first step that Abrahamsen, Adamaszek and Miltzow take to show ∃R-hardness is to identify a
relatively simple ∃R-complete problem to reduce from, which they call ETR-INV.

4



Nathan Sheffield, Alek Westover

Figure 4: A figure from [AAM17] illustrating an art gallery guardable with 3 point guards, but which requires
4 point guards if guards are placed at rational coordinates. Guards are restricted by triangular holes to lie
along the green segments, and in order to guard all 4 of the large quadrilateral holes, the middle guard must
lie to the left of the blue quadratic curve and to the right of the red quadratic curve – these two curves
intersect at an irrational point.

Definition 2.4. An instance of ETR-INV consists of variables x1, x2, . . . , xn, and constraints of the following
forms:
• xi = 1
• xi + xj = xk

• xi ·xj = 1. The problem is a YES instance if and only if there exists an assignment to each of the variables
such that all variables lie within [1/2, 2] and all the constraints are satisfied.

Theorem 2.5. Deciding ETR-INV is ∃R-complete.

The proof of this theorem is some somewhat involved algebra. This problem is a useful starting point
for showing ∃R-hardness because it requires fewer types of constraints to be implemented than the general
existential theory of the reals problem (e.g. instead of having to encode arbitrary multiplications, the
reduction only needs to provide a gadget for inverting a variable, and instead of encoding arbitrary inequality
constraints, we just need equalities and the fact that all variables lie within [1/2, 2]).

Abrahamsen, Adamaszek and Miltzow show hardness of PointGuard by reduction from ETR-INV. Their
construction involves a large region with a row of variable gadgets at the bottom, and clause gadgets on the
sides. The value of a variable is encoded by where a guard is placed along a specific segment; clause gadgets
copy these guard placements onto new segments, and enforce particular relationships between them.

A variable gadget is shown in Figure 5.
The clause gadgets are arranged along the walls. They consist of small passageways into additional

tucked-away rooms, as shown in Figure 6. Those rooms are designed such that the number of guards
required to guard them increases by at least 1 if some constraint on the variable gadgets fails.

The way a clause gadget functions is by copying values from 2 or 3 different variable gadgets onto new
guard segments within the gadget. This copying allows the gadget to check that the constraint is satisfied
without interfering with the rest of the construction; an illustration of the idea is shown in Figure 7.

The copy gadgets work by using nooks and umbras, as shown in Figure 8 and Figure 9.

After constructing copy gadgets, what remains for the reduction is to construct clause gadgets enforcing
constraints of the form xi + xj = xk and xi · xj = 1. The constructions of these gadgets are rather complex,
with several components, and values found by computer search – we will not present them here. The only
aspect of any of this that is actually relevant to our result in this paper is that, for the entire construction,
every guard must be placed either:
• on a specific line segment, or
• at a specific point,
and that each of these guard points and guard segments requires exactly 1 guard.

5



Nathan Sheffield, Alek Westover

Figure 5: In order for a single guard to be able to see all of the blue edge, the red edge, and the yellow edge
of the polygon, it must lie within all 3 of the corresponding highlighted regions. The intersection of these 3
regions is a single line segment, shown in green – this gadget is satisfied by a single guard if and only if that
guard is placed somewhere along the green segment. The placement of the guard along the segment encodes
the value of the corresponding variable.

Clause gadgets

Variable gadgets

Figure 6: Each clause gadget is structured internally so that it relies on visibility from at most 3 of the
variable gadgets.

6



Nathan Sheffield, Alek Westover

copy gadgets

clause gadget

Figure 7: By making use of carefully placed copy gadgets, we can build a clause gadget whose satisfiability
depends only on the placement of guards in a couple specific variable gadgets.

Figure 8: The green segments represent guard segments (one corresponding to a variable gadget, the other
to the segment we’re copying it to in a clause gadget), and the orange point represents a guard (note that
the room we’ve constructed around it forces a guard to be placed at that exact point). Here, we call the
red segment a nook, and the blue segment an umbra. Note that, for both guard segments, the closer to
the middle the guard is placed the more of the red nook segment it can see, but the less of the blue umbra
segment it can see. The idea is that, in order to be able to see all of both the nook and the umbra between
the two of them, the guard on the second segment’s location is determined exactly by the guard on the first
segment. The purpose of the yellow guard in this construction is to be able to see everything below the
umbra segment, but nothing above it, so that the whole construction is guarded iff the guard segments can
see both the nook and umbra.

7



Nathan Sheffield, Alek Westover

Figure 9: By constructing this gadget precisely, we ensure that wherever the first guard is placed, in order to
see the remaining portions of the nook and umbra, the second guard must be placed exactly at a corresponding
point.

3 LineGuard is in ∃R
In this section we prove that LineGuard is contained in ∃R. Recall that the LineGuard problem is defined as
follows: given a polygon P and guard number g, is it possible to place g line-segments in P (in particular
the line segments are not allowed to have any parts outside of P ) such that every point in P is visible from
somewhere on some line segment? The proof technique is, naturally, similar to the proof that PointGuard
is contained in ∃R. The key difference is that we replace Lemma 2.2 with the more subtle Lemma 3.1, as
follows.

Lemma 3.1. Fix polygon P and a set of guard line segments. Let X be the set of vertices of P union with
the set of endpoints of guard line segments. Let L denote the set of lines joining pairs of points in X. Let
R denote the faces of the regions in the arrangement inudced by L. Let C be the set of centroids of regions
in R.

If a guard line segment ℓ can see any point in region R ∈ R then ℓ can see all of R.

Proof. Fix region R. If the endpoint of any guard line segment can see R, then by Lemma 2.2 that endpoint
can see all of R. Thus, it suffices to consider the case that no endpoint of any guard line segment can see R.

Now, suppose some point x on guard line segment ℓ can see a point in region R (where x is not an
endpoint of ℓ). Let x′ be the farthest to the left point of x on ℓ such that all points between x′, x on the line
can see a point of R (and x′ is also not an endpoint). There must be some obstacle that prevents points to
the left of x′ from being able to see R. Specifically, the line of sight from x′ to R must pass through some
corner v of the polygon (it can’t pass through an edge of P because edges of P are not internal to regions
of the arrangement). Then, by Lemma 2.2 the vertex v can see all of P .

Let y, y′ be the furthest clock-wise, and furthest counter-clock-wise points of R measured as angles from
v. That is, if the line joining (v, y) clock-wise about v then it will no longer intersect R; an analogous
statement holds for y′. Let F denote the field-of-view cone, defined by the region between the line joining
(v, y) and the lint joining (v, y′). Suppose that F contained an endpoint z of a guard line segment. Then
the line joining (z, v), which is part of the arrangement, would further subdivide the region R, which is
impossible because we assumed that R is a region of the arrangement. Now, suppose that there is some
obstacle in F that obstructs the portion of the guard line segment in F from seeing v. First, suppose that
the obstacle is a vertex v′ in F . In this case the line joining (v, v′), which is included in the arrangement,
would further split region R, so this cannot happen. If the obstacle is an edge of the polygon, then it cannot
intersect the guard line segment, and so would need to block x′ from seeing v, which cannot be the case
because x′ can see v by definition. Hence there are no obstacles in this portion of F .

Thus, for any point z′ in R, if we draw the line of sight from z′ to v, and extend it back to the guard
line segment, this entire segment described is unobstructed, so ℓ can see the point z′. Thus, ℓ can see all of

8



Nathan Sheffield, Alek Westover

Figure 10: Assuming the region R isn’t visible from an endpoint of the guard segment, there is some vertex
v ∈ V such that the guard segment can see v, and v can see a point of R. This means by Lemma 2.2 that v
can see all of R.

Figure 11: Projecting v’s “field of view” of R backwards, we know that it can’t contain either an endpoint
of the guard segment or a vertex of P , since this would cause a line bisecting R in the arrangement. But
this means that every line-of-sight from v to R can be extended backwards to a point on the guard segment,
meaning the guard segment sees all of R.

9



Nathan Sheffield, Alek Westover

R.

Using Lemma 3.1 it is relatively straightforward to prove that LineGuard ∈ ∃R.

Theorem 3.2. LineGuard ∈ ∃R.

Proof. Let N be an upper bound on the maximum possible size of the set C of centroids of regions; note N is
polynomial in the input size and is determined by P, g. Note also that, again as in the proof of Theorem 2.3,
it is possible to write down a polynomial-sized ∃R formula SEE-CENTERS((x1, y1) . . . , (xN , yN )) that is
satisfied if and only if its input points can see all elements of C. The formula looks like: first, encode the
algorithm for finding the arrangement and taking centroids as an ∃R formula (possible because Diophantine
equations can encode arbitrary computations), then add a constraint encoding that at least one of the input
points sees each of those centroids.

Now, to show LineGuard ∈ ∃R, the formula will first existentially quantify over the g endpoints of the
guard segments, then it will existentially quantify over N “guard points”. It will verify that each guard
point lies on one of the guard segments, and that SEE-CENTERS(guard points) holds. This suffices to show
∃R containment: if the centroids are visible from the guard segments, then since there’s at most N of them,
there exist N points along the guard segments that collectively see all of them.

We also have the following corollary.

Corollary 3.3. Given a polygon P , guard number g, and quantity ε, it is possible to determine in ∃R
whether there is a set of g side-length ε square guards that can see all of P .

Proof. Points in the interior of the square are irrelevant. Once we quantify over the placement of the squares
we simply have a set of line segments and use the same procedure as in Theorem 3.2 to check if these line
segments can see all of P . Of course, we could replace “side-length ε square” here with any fixed polygon or
∃-recognizable family of polygons.

4 PaintGuard and PromiseGuard are in NP

In this section we consider the PaintGuard and PromiseGuard problems. We show that these problems are
in NP; in particular this means that these problems are not ∃R-complete, unless ∃R = NP. Our original
motivation for considering these variants of PointGuard was a hope that they were ∃R-hard, and would be
useful components of a proof of ∃R-hardness of LineGuard. We think the failure of these problems to be
∃R-hard is interesting and sheds light on what is and is not responsible for the ∃R-hardness of PointGuard.
Beyond this, the PaintGuard and PromiseGuard problems are independently interesting1.

Recall that the PaintGuard problem asks, given a list of n vertices specifying a polygon P , a list of n points
within the polygon specifying the locations of paintings, and g a number of guards, determine whether there
is a placement of g guards that can see all the paintings.

Theorem 4.1. PaintGuard ∈ NP.

Proof. Let X be the set of painting locations and vertices of the polygon. Let L denote the set of all lines
passing through two points in X. Let R denote the set of cells in the arrangement induced by L.

Now we give an NP algorithm for solving PaintGuard. Compute R, and for each region R ∈ R compute
a list of all paintings that are visible from region R. Specifically, to check if region R can see painting x,
draw the line segment between x and the centroid of R and check if this line segment intersects any edge
of the polygon. We are using a key fact here, namely that Lemma 2.2 implies that if a painting x can see
the centroid of a region R ∈ R, then the painting can see all of region R. After creating these lists for each
region, non-deterministically choose a set of g regions in R to place guards in, and check if the union of the
paintings visible from these chosen regions contains all paintings.

The correctness and efficiency of the algorithm are clear.

1We recently found a mention of the NP hardness of PaintGuard known in the literature [Sta23], but are choosing to still
include the proof here because it’s simple and nice.

10



Nathan Sheffield, Alek Westover

Recall the PromiseGuard problem: We are given a polygon P , guard number g, and radius ε, expressed
as a B′ bit binary decimal. The problem is to distinguish between two cases: (1) P can be guarded by g
point guards. (2) P cannot be guarded by g radius ε circle guards.

Theorem 4.2. PromiseGuard ∈ NP.

Proof. Our algorithm is as follows. Non-deterministically place g side-length ε/10 square guards centered
at lattice points in the grid formed by partitioning [0, 1]2 into ε/100× ε/100 sized squares2. Then, check if
these guards can see all of P ; we describe how to perform this check momentarily. If the guards can see all
of P output that we are in case (1). Otherwise, output that we are in case (2).

The square guards can see all of P if and only if the line segments defining their boundaries can see all
of P . To check this we construct the same arrangement as in Theorem 3.2: we let X be the set of endpoints
of line segments and vertices of P , and consider the arrangement induced by joining all pairs of points in X.
By Lemma 3.1 we have that if an edge ℓ of a square guard can see a single point in region R then ℓ can see
all of R. Thus it suffices to check whether for each centroid c of a region R there is an edge ℓ of a square
guard that can see c. Because sight is symmetric, we can equivalently check that each centroid c can see
some edge ℓ. To perform this check we construct a second arrangement. We let X ′ be the set of vertices in
the polygon unioned with a centroid {c}, and let R′ be the arrangement induced by the lines joining every
pair of points in X ′. By Lemma 2.2 we have that for every region R ∈ R′, if c can see a single point in R
then c can see all of R. Now, we compute the set of regions R ∈ R′ visible from c, and check if there is any
edge of a guard square that has non-empty intersection with one of these regions R visible from c.

Because the guard squares were placed at points on a lattice which is not too fine, all of the arrangements
mentioned in the above analysis are defined by “nice coordinates” so all the computations described above
can be performed in poly(n,B,B′) time. Thus, our algorithm runs in NP.

We now prove the correctness of our algorithm.

Claim 4.3. If P is guardable by g point guards then our algorithm reports that we are in case (1).

Proof. Suppose that there exists G, a set of g point guards that can see all of P . For each point x ∈ G, there
is a lattice point x′ in our ε/100× ε/100 grid such that a square of side-length ε/10 centered at x′ covers x.
Thus, there is a placement of square guards onto the grid that can see all of P , and our NP algorithm can
non-deterministically guess this placement.

Claim 4.4. If P cannot be guarded by g radius ε guards then our algorithm reports that we are in case (2).

Proof. Suppose that our algorithm outputs that we are in case (1). Then, there must be a placement of ε/10
side-length squares onto points in the grid that could see the entire polygon. Then, radius ε circles centered
at the same points can also see all of P , so we are indeed in case (1).

5 3D line guard is ∃R hard

In 3DLineGuard, you are given as input P : a union of intersection of half-spaces and a number g. The
problem is to determine whether it is possible to place g line segments in P such that every point in P is
visible from some point on some line segment. Again, we say that point x is visible from point y if the line
segment joining x, y lies completely within P .

Theorem 5.1. 3DLineGuard is ∃R-hard.

Proof. Recall that in Abrahamsen, Adamaszek, and Miltzow’s reduction proving the ∃R-hardness of the
Art Gallery Problem, there exist g many fixed guard points and guard segments (with nice rational
coordinates) of the polygon such that any solution to the problem, if it exists, must place exactly one guard
along each guard segment and one guard at each fixed point. We will exploit this property to show ∃R
hardness of 3DLineGuard by reduction from PointGuard. Our reduction will be slightly unsatisfying because

2Recall that P is defined to be contained in [0, 1]2.

11



Nathan Sheffield, Alek Westover

it will make heavy use of planes with 0 width (we hoped for a while that maybe we could modify this
reduction to use regions of very small width instead of literal planes, but our approach for doing so was a
reduction from PromiseGuard, which we eventually realized was in fact in NP).

The idea of the reduction is to take the original PointGuard instance as an infinitely thin plane, and
then for every guard segment or fixed guard point, intersect upwards a tall thin plane strip or line segment
respectively, as in Figure 12. Then, add 100g many separate horizontal plane regions intersecting each of
those vertical lines and strips, as in Figure 13.

Figure 12: Converting a 2-dimensional art gallery into a 3-dimensional art gallery formed as the union of
several infinitely thin planes and lines.

Figure 13: Each of these upward strips and lines gets a bunch of horizontal regions crossing it. This ensures
that in order to guard each of them there must be a guard segment passing vertically up (it’s simply
impossible to see all those horizontal regions otherwise).

Now, suppose we want to guard the gallery with g many line guards. if the original PointGuard instance
had a solution with g point guards, we could take this solution, and extend each point up into a line segment
passing up its corresponding vertical line or strip. The single point intersections with the polygon would cover
the whole base, and the segments passing up through the strips would let the guards see every horizontal
plane region, so the whole gallery would be covered. On the other hand, suppose the original PointGuard
instance didn’t have a solution with g point guards – in that case, in order to cover the base at least one of
our line guards must intersect with the base in more than one point (no other points in the construction can
see any points in the base – this is why infinite thinness is necessary). To intersect with the base in more

12



Nathan Sheffield, Alek Westover

than one point, the guard line must lie entirely within the base. Since we have g many line guards and g
many vertical strips/lines, this means at least one of these vertical objects must not have a vertical guard
running up through it – but then it is impossible to see all of it. So, this 3DLineGuard instance is solvable if
and only if the original PointGuard instance was.

6 Conclusion

There are lots of interesting Art Gallery variants. We have considered a few here, and shown some basic
things about their hardness. The most pressing open question we are left with is: Is the two-dimensional
problem LineGuard ∃R-hard? Doing this problem in 3 dimensions definitely feels like cheating – the two-
dimensional version almost certainly requires a lot more tricky constructions.

It would also be interesting to consider hardness of approximation variants of the problem, where you
need to distinguish between an art gallery being guardable by g guards and not guardable by, e.g., 100g
guards. There are gap NP-hardness results known [ESW01], but as far as we’re aware nothing is known
about corresponding notions of gap ∃R-hardness.

Finally there are several problems spiritually related to the art gallery problem that could be interesting
to show ∃R hardness for, if true. One of these is the classic watchman route problem of minimizing
the length of a route through a polygon that sees every point, and another is the visibility-based pursuit
evasion problem of determining whether a set of mobile guards has a movement strategy that will guarantee
them to find an arbitrarily-fast robber. Both of these problems have been studied, and are known to be
NP-hard, but not known to be in NP [SY92; CN86; Gui+97]. It seems very plausible that both of these
problems could be ∃R-hard. However, although these problems seem related to the art gallery problem in
flavour, it seems like any reduction would have to look radically different.

References

[AAM17] Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. “Irrational Guards are Sometimes
Needed”. In: 33rd International Symposium on Computational Geometry (SoCG 2017). Ed. by
Boris Aronov and Matthew J. Katz. Vol. 77. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017, 3:1–3:15.
isbn: 978-3-95977-038-5. doi: 10.4230/LIPIcs.SoCG.2017.3. url: https://drops.dagstuhl.
de/entities/document/10.4230/LIPIcs.SoCG.2017.3.

[AAM18] Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. “The art gallery problem is ∃R-
complete”. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Comput-
ing. STOC 2018. Los Angeles, CA, USA: Association for Computing Machinery, 2018, pp. 65–73.
isbn: 9781450355599. doi: 10.1145/3188745.3188868. url: https://doi.org/10.1145/
3188745.3188868.

[Can88] John Canny. “Some algebraic and geometric computations in PSPACE”. In: Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing. STOC ’88. Chicago, Illinois, USA:
Association for Computing Machinery, 1988, pp. 460–467. isbn: 0897912640. doi: 10.1145/
62212.62257. url: https://doi.org/10.1145/62212.62257.

[CN86] Wei-pang Chin and Simeon Ntafos. “Optimum watchman routes”. In: Proceedings of the second
annual symposium on Computational geometry. 1986, pp. 24–33.

[ESW01] Stephan Eidenbenz, Christoph Stamm, and Peter Widmayer. “Inapproximability Results for
Guarding Polygons and Terrains”. In: Algorithmica 31 (Sept. 2001), pp. 79–113. doi: 10.1007/
s00453-001-0040-8.

[Gui+97] Leonidas J Guibas et al. “Visibility-based pursuit-evasion in a polygonal environment”. In: Algo-
rithms and Data Structures: 5th International Workshop, WADS’97 Halifax, Nova Scotia, Canada
August 6–8, 1997 Proceedings 5. Springer. 1997, pp. 17–30.

13

https://doi.org/10.4230/LIPIcs.SoCG.2017.3
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2017.3
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2017.3
https://doi.org/10.1145/3188745.3188868
https://doi.org/10.1145/3188745.3188868
https://doi.org/10.1145/3188745.3188868
https://doi.org/10.1145/62212.62257
https://doi.org/10.1145/62212.62257
https://doi.org/10.1145/62212.62257
https://doi.org/10.1007/s00453-001-0040-8
https://doi.org/10.1007/s00453-001-0040-8


Nathan Sheffield, Alek Westover

[LL86] D. Lee and A. Lin. “Computational complexity of art gallery problems”. In: IEEE Transactions
on Information Theory 32.2 (1986), pp. 276–282. doi: 10.1109/TIT.1986.1057165.

[Sta23] Jack Stade. The Point-Boundary Art Gallery Problem is ∃R-hard. 2023. arXiv: 2210.12817
[cs.CG].

[SY92] Ichiro Suzuki and Masafumi Yamashita. “Searching for a Mobile Intruder in a Polygonal Region”.
In: SIAM Journal on Computing 21.5 (1992), pp. 863–888. doi: 10.1137/0221051. eprint: https:
//doi.org/10.1137/0221051. url: https://doi.org/10.1137/0221051.

14

https://doi.org/10.1109/TIT.1986.1057165
https://arxiv.org/abs/2210.12817
https://arxiv.org/abs/2210.12817
https://doi.org/10.1137/0221051
https://doi.org/10.1137/0221051
https://doi.org/10.1137/0221051
https://doi.org/10.1137/0221051

	Introduction
	The Art Gallery Problem
	Our Results on the Complexity of Art Gallery Variants

	Preliminaries
	The Complexity Class R
	Art Gallery is in R
	Art Gallery is R hard

	LineGuard is in R
	PaintGuard and PromiseGuard are in NP
	3D line guard is R hard
	Conclusion

