
What Can You Do with an Oracle for the Random Strings?

Nathan Sheffield and William Wang

Apr 2024

1 Introduction

1.1 Friendly discussion

The notion of Kolmogorov complexity captures the sense in which a string looks inherently random or un-
structured to any computable process. We’ll say that a string looks “random” if there’s no program of length
shorter than the string itself that prints it – if you pulled some random numbers out of your hat, chances
are they’d have this property, but a very structured string like “01010101010101...” does not, since it can be
generated quite succinctly with a simple for loop. Call the set of all such random-looking strings RK. (Of course,
this notion should depend to some degree on what language you’re writing these programs in – more on that
soon.)

A first question might be: can we write down an algorithm to determine on input x whether x ∈ RK?
The answer to this question is a resounding “no”: if we could, then we could modify that algorithm to say
“search through all strings until we find a random-looking one 100 times longer than this program’s code,
and print that”, which would give a short program to generate a long random-looking string – contradic-
tion! A second, more subtle, follow-up question you might ask is: ok, so RK is hard to compute – but is it
hard in a useful way? That is, if I had some magic oracle that could answer any question of the form “is
x∈RK?”, would this be useful for the sorts of computations I might actually want to do? It seems like this
could be the case – for instance, if I’m a deterministic machine running in polynomial time, I could use RK

queries to find a string that looks random, and then simulate a randomized machine. But it’s not immedi-
ately obvious if that’s all I can do, or if maybe I can solve any computable problem at all, or somewhere
in-between.

This survey will be dedicated to trying to answer this question. We’ll outline a line of results that show, perhaps
surprisingly, that the question of what can be efficiently reduced to RK gives rise to some interesting concrete
complexity classes.

1.2 Outline of the survey

As we defined it, the question of Kolmogorov complexity depends on what programming language you’re using.
The way we actually formalize this is by fixing a specific universal Turing machine U, and looking at the length
of input to that Turing machine required to generate a given output. Also note that we’re mainly going to be
considering the prefix-free complexity, KU , which has a slightly different definition from the plain Kolmogorov
complexity CU . For the reader unfamiliar with these things, they’ll be defined in Section 2 – for now just think
of RKU

as meaning “the set of strings with no shorter descriptions than themselves in programming language
U”.

The main goal of this survey will be to show that EXPNP ⊆
⋂

U PRKU ⊆ EXPSPACE. That is, the class
of problems that can be solved in polynomial time with an oracle for the random-looking strings no matter
what “programming language” you use to define “random-looking” is a concrete, computable complex-
ity class, lying somewhere between the lower levels of the exponential time hierarchy and exponential space.
The EXPSPACE inclusion comes from combining the results of Allender, Friedman and Gasarch [AFG13] with

1

those of Cai et al [Cai+14]; the arguments used come from computability theory. The EXPNP containment,
a surprising advance on previously-known bounds, was proven by Hirahara [Hir20] – it involves constructing
a PRG based on an EXPNP complete problem, and then using Hirahara’s earlier result on poly-time “selec-
tors” for EXPNP to show that a distinguisher for the PRG gives a uniform algorithm for the original problem
[Hir15].

We will also briefly discuss what’s known for the plain complexity, RCU
. The story here is not so nice as for

prefix-free complexity: Hirahara’s proof of EXPNP containment still holds for ∩UPRCU , but the proof of EXPSPACE
inclusion no longer works. It’s not even known whether ∩UPRCU contains the halting problem – Allender has
offered a $1000 bounty to anyone who can resolve this question (could be you, dear reader!) [All23]. Most of the
results known for RCU

involve disjunctive truth-table reductions, where an algorithm asks a list of questions
non-adaptively, and accepts if the oracle says YES on any query. In this setting, RCU

behaves meaningfully
differently from RKU

, which suggests that perhaps our lack of knowledge about efficient reductions to RCU

compared to RKU
comes from fundamental differences as opposed to just technical limitations of known arguments

[Kum96; ABK06; MP02].

Finally, we will state some recent results on approximations to the Kolmogorov-random strings. That is,
you have an oracle that promises to say YES if a string has very high Kolmogorov complexity, and NO if a
string has very low Kolmogorov complexity, but there’s some allowable error window where it’s allowed to do
either. This is a rather nice notion because the choice of universal Turing machine U only affects the Kol-
mogorov complexity by a constant, and the difference between the prefix-free KU and plain CU complexities
is at most O(logn), so as long as the allowable error window is sufficiently large we don’t have to worry about
which of these definitions we’re using. Saks and Santhanam showed that honest (a technical condition forbid-

ding queries on very small strings) single-call poly-time reductions to approximate R̃K, if the error window is
larger than ω(logn), can’t do anything outside of P [SS22]. Building on their work, Allender, Hirahara, and
Tirumala recently showed that, for any error window of size ω(logn) but no(1), the class of problems honestly

reducible to R̃K in randomized poly-time is exactly the class NISZK, of problems with non-interactive statistical
zero knowledge proofs [AHT23]. There’s quite a long string of modifiers in this statement (“honest”, “ran-
domized”, “non-interactive”, “statistical”, etc), but it is interesting as a case where a notion of reductions to
the the random strings exactly characterizes a previously-studied complexity class. It’s also interesting because
Allender has proposed an optimistic approach to separate NL from NP using the log-space version of this result
(which they also showed) – as far as the authors of this survey are aware, that approach has yet to be ruled
out.

2 Preliminaries

Definition 1. Given a Turing machine M , for any x∈{0,1}∗ we say that the (plain) Kolmogorov complexity
CM of x is

CM(x)=min{|p| :M(p)=x}
where |p| denotes the length of p. p forms a description of x relative to machine M .

This definition of complexity captures the idea of how simply we can express x, if we have some underlying machine
M . Typically we think of C as being defined relative to a universal Turing machine.

Definition 2. Define a universal Turing machine U to be a Turing machine such that for all other machines M ,
there exists a constant cM such that

CU(x|y)≤CM(x|y)+cM , ∀ x,y

This is nice, because it means CU captures some “universal” notion of complexity – defining relative to any other
machine will differ only by a constant.

While C is a useful notion of complexity, we will often instead focus on the related notion of prefix-free
Kolmogorov complexity.

2

Definition 3. A prefix-free Turing machine is any machine M with the property that, if M halts on an input x,
it does not halt on input xy for any y. That is, no string on which it halts is a prefix of another. The prefix-free
complexity KM(x) is again defined as

KM(x)=min{|p| :K(p)=x}.

Like before, we can show the existence of universal prefix-free Turing Machines, so we can fix an arbitrary univer-
sal machine and just speak of the prefix-free Kolmogorov complexity of a string. Despite looking slightly different,
prefix-free Kolmogorov complexity measures roughly the same quantity as standard Kolmogorov complexity:

Theorem 1. Fixing arbitrary universal machines and omitting O(1) terms, we have

C(x)≤K(x)+2log2C(x)

So, it seems that prefix-free complexity is just a slightly more obfuscated version of our theoretically clean standard
complexity. In that case, why do we care? While the definition is somewhat more complicated, prefix-free
Kolmogorov complexity is generally preferred as an object of study, as it has many convenient properties which
do not hold for standard Kolmogorov complexity:

Theorem 2. Once again ignoring O(1) terms, we have:

• Subadditivity: K(⟨x,y⟩)≤K(x)+K(y)
• Symmetry: K(⟨x,y⟩)=K(⟨y,x⟩)
• Kraft Inequality:

∑
x∈{0,1}∗2

−K(x)≤1

One property in particular that we will use is the relationship between the prefix-free complexity and what
Allender, Friedman and Gasarch call a “prefix-free entropy function”. Essentially, we have that any computably-
enumerable sub-probability measure that’s nonzero on all strings corresponds to the complexity under some prefix
machine.

Definition 4. For any function f :{0,1}∗→N, we define the overgraph

ov(f)={(x,y):f(x)≤y}

Definition 5. We call a function f :{0,1}∗→N a prefix-free entropy function if
∑

x∈{0,1}∗2
−f(x)≤1 and

ov(f) is computationally enumerable.

Lemma 1 (Allender, Friedman, Gasarch [AFG13]). For any prefix-free entropy function f , there exists a prefix-free
machine M such that f(x)=KM(x)−2.

3 The K-random strings won’t let you beat EXPSPACE

Our goal in this section will be to show an upper bound on the power of an oracle for the random strings
— namely, that

⋂
U PRKU ⊆ EXPSPACE. Our proof strategy for doing so will be an approach common in

computability theory called a finite injury argument. Fixing some hard language L, we want to show
the existence of a universal prefix machine U such that no polynomial time reduction succeeds in reduc-
ing L to RKU

. We can think of this as a countably infinite list of requirements that the machine U
we construct must satisfy: for every possible reduction, to RKU

, we need that reduction’s output to differ
from L on some input x. In a standard diagonalization argument, we might ensure that over the course
of our construction each of these requirements eventually becomes satisfied, and that once a requirement
becomes satisfied it is never subsequently “injured” (i.e. never stops being satisfied). In a finite injury ar-
gument, we permit the construction to occasionally injure previously-satisfied requirements, but show that
every time a requirement is injured it will eventually be re-established, and that any given requirement can
only be injured a finite number of times. This ensures that, as the construction runs off to infinity, even-
tually each requirement stops changing and remains satisfied forever. A typical approach to finite injury
arguments is to give each of the requirements (in our case, each potential reduction we want to thwart)

3

a priority based on what position they are in some canonical ordering, and show that we can only in-
jure one requirement through actions taken to satisfy a higher-priority one — since every requirement has
only a finite number of higher-priority requirements, this ensures each is injured only a finite number of
times.

In order to get control over what RKU
looks like, we will use Lemma 1. Note that this fact is specific to

the prefix-free complexity, which is why we only know the main result for RKU
and not RCU

. That is, in-
stead of giving a universal prefix machine directly, we will show a procedure for enumerating values into the
overgraph of a prefix-free entropy function, using the fact that this can be turned into a corresponding prefix
machine.

The actual statement we prove will be about non-adaptive reductions — we say A ≤P
tt B if there exists a

poly-time algorithm for A that makes poly many queries to a B-oracle non-adaptively, meaning that future queries
can’t depend on previous responses. From the fact that

⋂
U{A :A≤p

ttRKU
}⊆PSPACE, we will be able to deduce⋂

UP
RKU ⊆EXPSPACE as an easy corollary.

Theorem 3 (Allender, Friedman, Gasarch [AFG13], Cai et al [Cai+14]).⋂
U

{A :A≤p
ttRKU

}⊆PSPACE

Proof. We will omit the proof, given by Cai et al, that
⋂

U{A :A≤tt RKU
}⊆∆1

0, and instead only show that
∆0

0

⋂
U{A :A≤p

tt RKU
}⊆PSPACE — that is, that

⋂
U{A :A≤p

tt RKU
} contains no decidable languages outside

of PSPACE1. For this purpose it suffices to find, for any fixed L∈∆0\PSPACE, a universal prefix machine U
such that L≰p

ttRKU
. In fact, we will find a U such that L≰p

ttov(KU)
2. By making |x| many queries to ov(KU),

one can compute the exact value of KU(x) — so an oracle for ov(KU) is at least as strong as an oracle for
RKU

.

In order to find such a U, we will construct a function H such that H−2 is a prefix-free entropy function,
which will by Lemma 1 give a corresponding universal prefix machine with KU =H. To build H, we’ll start with
some standard prefix-free Kolmogorov complexity measure K, defined relative to an arbitrary universal machine.
Then, we’ll set

H(x)=min(K(x)+5,F(x)+3)

for some computably enumerable function F we construct. The idea is, if we started with F(x) initialized to be
infinitely large everywhere, then H(x)−2 would be a prefix-free entropy function with some “wiggle-room”, in the
sense that by the Kraft inequality we’d have

∑
x∈{0,1}∗2

−(H(x)−2)= 1
8

∑
x∈{0,1}∗2

−K(x)≤ 1
8 . As long as we don’t go

“over-budget”, this wiggle-room will allow us to decrease H at the indices we care about, which we’ll do through
our choice of F . Since ov(F) and ov(K) are computably enumerable, ov(H) is computably enumerable — so the
only condition we need to maintain to ensure that H corresponds to some prefix-free Kolmogorov measure is that∑

x∈{0,1}∗2
−(H(x)−2)≤1, or in other words

∑
x∈{0,1}∗

2−H(x)≤ 1

4
. (*)

Constructing F in a computably enumerable fashion to both thwart all Turing reductions and preserve (*) will
require some care, because the values of K aren’t computable. We do, however, know that ov(K) is computably
enumerable. So, we’ll construct F in stages. That is, we’ll run the enumerator for ov(K), and every time it
prints a new string, we’ll possibly enumerate things into F in response. At every stage, we let F∗ and K∗ be
the “current versions” of F and K, respectively, and every time an element is enumerated into ov(F) or ov(K)
we update these functions accordingly. Note that F∗,K∗ will be monotone in the sense that F∗(x) (resp. K∗(x))
can only decrease as we continue enumerating elements from ov(F) (resp. ov(K)). At the beginning, we set

1The proof by Cai et al follows a similar format to this one, adapting the proof of Muchnik that RKU
fails to be truth table

complete for some U[MP02]. However, the details are involved and we’ve chosen not to include them here.
2Recall that we define (z,r)∈ov(KU) if KU(z)≤r.

4

F∗(x) = 100|x|+100, and K∗(x) to be the empty function. Note that, at any point, F∗,K∗ naturally define
H∗(x):=min(K∗(x)+5,F∗(x)+3).

We can now think of the updates to F∗ and K∗ as a game to determine the value of a truth table reduction.
In particular, consider a circuit λ from a truth table reduction for some input x with input queries of the form
“(zi,ri)∈ov(H∗)?” By updating F∗,K∗, we change the value of H∗, which may change the output of the circuit. To
formalize these ideas, we define a graph G with nodes labeled with tuples (h,b) where h is a function {zi}→N and b
is the output of λ if H∗ agrees with h on {zi}. We draw an edge between (h1,b1)→(h2,b2) whenever h2(zi)≤h1(zi)
for all zi. Now, we can think of F∗ and K∗ playing a game where they place a token on the node corresponding
to the starting value of H∗ over {zi}, and every update to either F∗ or K∗ moves the token along an edge. These
moves always occur along edges since updating F∗ and K∗ can only decrease the image of H∗(x). To further
constrain the game, we will define an associated “cost” for moving from h1 to h2, equal to∑

x∈{zi}

2−h2(x)−2−h1(x)

which is how much
∑

2−H∗(x) changes by under this move. Over the game, both players will accrue cost,
and we will set a rule whereby players cannot exceed a total cost of ϵ. We also give the players roles, one
of them the YES player who is trying to finish the game at a node with b = 1, and one as the NO player
who is trying to finish at b = 0. In our actual procedure, we will give F∗ the role which makes the truth
table reduction not work for L. If we assume that the YES player always starts first, note that there can
only be a finite number of moves in the game, so either the YES or NO player has a winning strategy,
meaning that they can force a win no matter what the other player does, assuming both players play by
the rules.

Our approach now will be to enumerate ov(K), interpret these updates to K∗ as moves on G, and then enumerate
F∗ in a way such that the game ends in a state (h,b) where b=1⇐⇒ x∉L, meaning that F∗ prevents the truth
table reduction corresponding to λ from working for L. Note that we have no control over the value of ov(K) or
how it is enumerated, so it is possible that the moves K∗ takes will not respect our total cost ≤ϵ condition. In
this case, we say that K∗ is “cheating” at the game. Part of our analysis will also be devoted to showing that
K∗ cannot cheat too much.

With the general idea of a game between F∗ and K∗ defined, we will now flesh out our procedure a bit
more. First, enumerate all possible polynomial-time truth table reductions γ1,γ2,γ3,.... Our ultimate goal is to
produce F,H such that L≰p

tt ov(H), and we can break this goal into requirements R1,R2,..., defining Re as the
requirement that γe is not a polynomial-time truth table reduction of L to ov(H). For each γe on input x, we
can construct the corresponding circuit λe,x.

At any given point in our procedure, we will maintain a list of games corresponding to the λe,x, with at
most one for each value of e, and as we receive more enumerated values from ov(K), we will move K∗ in all these
games and respond accordingly. As a technical note, we want these games to be somewhat independent. So, when
constructing a game on λe,x with queries {(zi,ri)}, we will make the following modifications:

1. If H∗(zi)≤ri, note that future modifications of H∗ will not change the input value for query (zi,ri) which will
always remain 1, since H∗(zi) can only decrease. So, just set it to a constant in λe,x and simplify the circuit.

2. If zi is part of a circuit λe′,x′ for e′<e, then set the input value for query (zi,ri) to 0. So, defining Xe to
be the set of {zi} for which the simplified λe,x actually runs on, we can express Xe iteratively by

Xe={zi}\
⋃
e′<e

Xe′

The reasoning behind this is that 0 will be the correct answer to the corresponding query unless an element
from F∗ or K∗ gets enumerated which causes H∗(zi) to be at most ri. But, in our construction, if this ever
happens, we will destroy this instance of the game as it is now “out of date.”

We use λe,x to denote the simplified circuit. Define Ge,x to be the game played on λe,x, and val(Ge,x,ϵ) to be 1
if the YES player has a winning strategy, and 0 otherwise with cost limit parameter ϵ. Since our ultimate goal is to

5

satisfy all the requirements Re, we say that Re is satisfied if we have a game Ge,x at (h,b) with b≠L(x), meaning
x is a witness to γe not being a valid truth table reduction.

We will now describe our iterative procedure for constructing F andH. On step 0, we will start with F∗(x)=2|x|+3,
K∗(x) is the empty function, and set a variable ie =0 for all e≥ 0. The purpose of the ie should not be ap-
parent right now, but it will control the value of ϵ in created games such that our construction will work.
Finally, we instantiate HEAP, an object which just returns strings in {0,1}∗ in lexicographical order, starting
with 0,1,00,.... We will query HEAP as we construct games to figure out what input we construct the circuit
on.

Now, on a given step s, we begin by taking the next enumerated element (x′,y′) from ov(K), update K∗

by setting K∗(x′)←min(K∗(x′),y′), and update H∗ accordingly. For each 1≤e≤s, we have two cases:

1. There does not exist a game corresponding to γe: In this case, we will construct a game for e. Define

ϵe=2−e−ie−6

Begin by drawing xs from the HEAP until we reach an x for which val(Ge,x,ϵe)≠L(x), meaning that if we
play to make the output of the circuit differ from L(x), we have a winning strategy. We now add this game
to our list of active games. It should not be clear that we will eventually draw such an x. As we will show
later, if such an x does not exist, then we will have a PSPACE algorithm for deciding L, which would be
a contradiction.

2. There is currently a game corresponding to γe: As the game is ongoing, we have a few cases to
consider, depending on whose turn it is and how K∗ has moved in it:
(a) If the game existed in the previous step and enumerating (x′,y′) did not cause the game state to change,

do nothing.
(b) If the game existed in the previous step and enumerating (x′,y′) caused K∗ to move in the game in

such a way that their total cost exceeded ϵe, then K∗ “cheated,” so we destroy the game by removing
it from the list of active games

(c) If Ge,x was just created and K∗ is the YES player, do nothing
(d) If none of the above cases hold, then either we have just created the game and it is our turn, or K∗

performed a legal move through enumerating (x′,y′) and it is now our turn. In this case, we consult
our winning strategy for Ge,x, and if it tells us to move, then we change H∗ by enumerating an element
from ov(F) in such a way that simulates this move.

Note that b) and d) are cases in which the values in Xe are changed, meaning future games Ge′,x′ with
e<e′≤s may no longer be valid, since we had to assume things about the elements of Xe. In this case,
we say that “Re is acting” and for each e′∈ [e+1,s], we destroy the game associated with e′ if it exists. As
stated before, this is because our assumptions on queries of the form (zi,ri) with zi ∉Xe′ and H∗(zi)>ri
might now be incorrect. If the game is destroyed due to case d), we will also increment ie′ by 1.

Running this procedure for all steps s≥0 will give us a way to enumerate ov(F). It remains to show that this
procedure works and that it delivers on all the properties we claimed for F and H.

Claim 1: For all e, Re only acts a finite number of times, and we end with Re satisfied.

Proof. We will prove this claim with strong induction. Suppose that, for all e′<e, the corresponding games only
act a finite number of times. Then, there exists a step s′ such that for s≥s′, no games e′<e ever act. So, this
means that ϵe is constant for s≥s′ and the only way for the game corresponding to Re to be destroyed is if K∗

cheats. Note that if enumerating (x′,y′) from ov(K) causes H∗(x′) to change, then the associated cost is

2−y′−5−2H
∗(x′)≤2−y′−5−2−y−5=

1

32

(
2−y′
−2y

)
where y was the value of K∗(x′) before the update. Thus, every cost c accrued by K∗ translates to an increase
by 32c in the value of

∑
i∈{0,1}∗2

−K∗(x)≤
∑

i∈{0,1}∗2
−K(x). In particular, every game K∗ cheats on increases

6

∑
i∈{0,1}∗2

−K∗(x) by at least 32ϵe. Since we have
∑

i∈{0,1}∗2
−K(x)≤1, we get that K∗ can only cheat a finite

number of times, after which the game Ge,x will not be destroyed. After this point, just note that the values of
H∗ on Xe constrain the game to a finite number of nodes, so the game will only be acted on a finite number of
times afterwards, and the proof is complete.

Claim 2: The H generated by this procedure satisfies∑
x∈{0,1}∗

2−H(x)≤ 1

8

Proof. Define Hs to be the value of H∗ after step s. Since H=lims→∞Hs, we have that∑
x∈{0,1}∗

2−H(x)=
∑

x∈{0,1}∗
2−H0(x)+

∞∑
s=1

∑
x∈{0,1}∗

2−Hs+1(x)−2−Hs(x)

First, by definition,

∑
x∈{0,1}∗

2−H0(x)=
∑

x∈{0,1}∗
2−2|x|−6=

∞∑
n=0

2n·2−2n−6=
1

64

∞∑
n=0

2−n=
1

32

The remaining terms in the sum correspond exactly to all the costs accrued as a result of the games. First, as
was stated in the proof of Claim 1, every time K∗ accrues a cost c, we have

∑
i∈{0,1}∗2

−K∗(x) increases by 32c.
Since we have ∑

i∈{0,1}∗
2−K∗(x)≤

∑
i∈{0,1}∗

2−K(x)≤1

the total cost accrued by K∗ over all games is bounded by 1/32.

Moving to the cost accrued by F∗, note that this can include cost accrued in games which have been de-
stroyed, as well as current games. First, over all games destroyed by K∗, note that F∗ plays by the rules, so its
total cost accrued is less than that accrued by K∗, so this case is bounded by 1/32. It remains to consider the total
cost by F∗ over extant games as well as games which were destroyed by case d) (ie. F∗ moved on a game below
it). Fix an e, and let d be the number of games destroyed due to case d). In each game, the total cost accrued
by F∗ does not exceed 2−e−ie−6, where ie is the number of games corresponding to Re destroyed beforehand due
to case d). So, the total cost at e does not exceed

d∑
i=0

2−e−i−6<

∞∑
i=0

2−e−i−6=2−e−5

Summing over all e, the total cost accrued in this case is bounded by
∑∞

e=12
−e−5=1/32. Hence, we have∑

x∈{0,1}∗
2−H(x)≤ 1

32
+

1

32
+

1

32
+

1

32
=
1

8

So, we have shown that our procedure will yield an H for which
∑

x∈{0,1}∗ 2
−H(x) ≤ 1/8, and eventually all

the Re are satisfied, meaning L ≰p
tt ov(H). All that remains to be done is to make good on our promise

in the first case of the procedure, namely that HEAP will eventually generate an x with the desired proper-
ties:

Claim 3: As described in the procedure, HEAP will always find an x for which val(Ge,x,ϵe)≠L(x) in finite time.

7

Proof. Suppose the contrary, namely that there exist some e,ϵ,x0 such that for all x≥x0 we have val(Ge,x,ϵ)=L(x).
Then, we claim there is a PSPACE algorithm A which decides L. First, hardcode L(x) for all x<x0 in A, so
we can answer these values automatically. Also, store the current H∗ and all the Xe′ for e′ < e so we have
what we need to construct Ge,x for any x ≥ x0. Note that H∗ is a function over the integers, but we can
still store it in constant space since it is computable from just the values which have been enumerated thus
far.

Now, to construct Ge,x on input x, note that we make at most |x|e queries toH, and on a query zi, H(zi) is bounded
above by 2|zi|+6. |zi| is in turn bounded by |x|e, so the number of possible DAG nodes is bounded above by

(2|x|e+6)|x|
e

≤Θ
(
2|x|

2e
)

So, a DAG node can be expressed in a polynomial number of bits. While we can’t fit the entire DAG in PSPACE
since there are an exponential number of nodes, note that since we can express each node in polynomial bits, we
can express val(Ge,x,ϵe)=1 as an alternating polynomial expression of the form “for all moves NO takes, there
exists a YES move such that for all moves NO takes, etc. we will stop at a node with b=1.” Since alternating
polynomial time is contained in PSPACE, this does indeed yield a PSPACE algorithm.

With the above 3 claims out of the way, it is now clear that the procedure is indeed good, and we have the desired
result.

Corollary 1. ⋂
U

PRKU ⊆EXPSPACE

Proof. A poly-time machine making adaptive oracles can be simulated by an exponential-time machine mak-
ing non-adaptive queries, by simply querying every possible value the adaptive oracle would ever query. So,⋂

UP
RKU ⊆

⋂
U{A :A≤exp

tt RKU
}. Scaling this down gives the desired statement. Note that this in fact also shows⋂

UNP
RKU ⊆EXPSPACE.

4 What if you’re a circuit? What if you’re randomized?

The upper bound we just described shows in particular that
⋂

UP
RKU ⊆EXPSPACE. Your definition of what an

“efficient algorithm” means might be different, though – you might be interested in whether we can extend this to ran-
domized algorithms (i.e.

⋂
UBPP

RKU ⊆EXPSPACE) or poly-sized circuits (i.e. ∆0∩
⋂

UP/poly
RKU ⊆EXPSPACE).

The first of these extensions is possible! However, the second is not – in fact,
⋂

UP/poly
RKU contains every decidable

language. The proof of this fact will illustrate the same basic technique we’ll use to show EXPNP⊆
⋂

UP
RKU in the

uniform setting. But first, as promised, let’s talk BPP. We’ll be loose on the exact details, but here’s the general idea.

Lemma 2 (Allender et al [All+06], Buhrman et al [Buh+05]). For all U , PRKU =BPPRKU .

Proof sketch. First, suppose that the PRKU algorithm is given, in addition to its length n input, a length poly(n)
string with full Kolmogorov complexity. Intuitively, since this string is has high Kolmogorov complexity, it avoids
any “special” properties, so we can use it in place of the BPP machine’s random coins and it will avoid the “special”
property of making the machine fail. Formalizing this argument is a little tricky when the BPP machine has an
uncomputable oracle, though – the actual way Allender et al get their “random” coins is by plugging the high
Kolmogorov-complexity string as the truth table of a hard function into the IW generator and then enumerating
over all outputs. But the basic principle is the same.

The other step required for this proof is to show that, given an RKU
oracle, it’s possible to in polynomial time

find some x∈RKU
of length poly(n). Buhrman et al show how to do this incrementally, showing that a string

with low complexity must have a string with slightly higher complexity within a short walk on an expander graph,
thus allowing a string of full complexity to be found in polynomial time.

Now, let’s show that ∆0⊆
⋂

UP/poly
RKU . The idea of the proof is: an oracle for RK will let you break pretty

much any PRG. A PRG’s output can be described by a constant-length program (the code for the PRG) and

8

a short seed, which together constitute a short description – so your RK oracle will tell you it isn’t random. The
Nisan-Wigderson construction lets us build PRGs whose security depends on non-uniform hardness assumptions – i.e.
where an algorithm distinguishing the PRG from true randomness gives a circuit for some supposedly hard problem.
So let’s build ourselves such a PRG, and then use our magic RK oracle to break it and solve the original problem!

Theorem 4 (Allender et al [All+06]). For any computable3 language L and any universal Turing machine U,
L⊆P/polyRKU .

Proof. Let GL be the Nisan-Wigderson generator, instantiated with hard language L and stretching n/2 bit inputs
to n bits. Any string in the image of GL has Kolmogorov complexity at most n/2+c, where c is a constant
depending on the length of a program implementing GL. For large enough n, n/2+c<n, so no output of GL

will be in RKU
. But a random string has good probability of being in RKU

, so this means that an RKU
oracle

constitutes a distinguisher for the PRG. By the hypothesis of the NW generator, there is a P/poly circuit family
that, given this distinguisher as an oracle, decides L on every input. So, L∈P/polyRKU .

5 The K-random strings will let you do EXPNP

We saw a proof in Section 3 that, with non-adaptive poly-time reductions, the random strings won’t let you
beat PSPACE, and that even with nondeterministic adaptive poly-time reductions you can’t beat EXPSPACE.
Originally, some people had the intuition that maybe

⋂
UP

RKU =PSPACE – we knew that PSPACE⊆
⋂

UP
RKU ,

if you guessed that adaptive reductions aren’t any better than non-adaptive ones this would mean the bounds
were tight. However, this turns out to be very false4: in this section we will explain a proof by Hirahara showing
that EXPNP⊆

⋂
UP

RKU .

The basic framework of the proof is the same idea we used to show ∆0⊆P/polyRKU : we engineer a PRG
such that any distinguisher can be black-box converted into an algorithm for a hard problem, and then use
our RKU

oracle as a distinguisher. We can’t just plug in Nisan-Wigderson and win anymore, though, because
breaking NW gives a non-uniform circuit family for the hard problem, and we’re looking for a uniform algo-
rithm. Getting PRGs from uniform assumptions is a tricky game. The basic insight that let Hirahara crank
this all the way up to EXPNP is that an RKU

oracle is a really, really good distinguisher – so good that it
can break even a PRG that stretches by only O(logn) bits. He gives a construction of a such a tiny-stretch
PRG where a distinguisher gives us an “only slightly non-uniform” algorithm for the hard problem – that is,
we can uniformly generate polynomially-many circuits such that at least one of them is guaranteed to work.
Then, assuming the hard problem is EXPNP-complete, he shows that we can figure out in uniform polyno-
mial time which of these circuits to listen to, using a selector (a relaxed notion of an instance checker) for
EXPNP.

There’s two key tools involved in this proof. The first, which will be necessary for the PRG construction, is
a result about locally list-decodable codes, which we’ll state without proof.

Lemma 3 (Sudan, Trevisan, Vadhan [STV01]). For any size N and error parameter ε, there exists an error-
correcting code mapping strings of length N to strings of length poly(N,1/ε), such that
• Encoding can be done in polynomial time, and
• There is a randomized decoding algorithm Dec that runs in poly(logN,1/ε) time. On input r, if r has distance
within 1

2−ε of the codeword of some x∈{0,1}N , Dec outputs a list of ℓ=poly(logN,1/ε) many deterministic
oracle circuits, such that with high probability over Dec’s coin flips one of those ℓ circuits computes xi on every
input i when given oracle access to r.

That is, given a corrupted codeword, with good probability, we can produce a small list of decoding circuits
such that one of them is guaranteed to compute x exactly (but we don’t know which one). The other tool in the
proof will be Hirahara’s construction of selectors for EXPNP.

3The original paper we’re citing actually claims that this approach shows that the halting problem can be P/poly truth-table reduced
to the Kolmogorov random strings. However, we’ve been unable to understand why this should be the case, and are instead just presenting
this weaker version. If you, the reader, understand why this works, please let us know! The concern is that when we plug the halting
problem in as the hard problem to a NW generator, it’s no longer clear that RK should be able to distinguish the output from random.

4Ok, ok “very false unless PSPACE=EXPNP”. You know what I mean.

9

Definition 6 (Hirahara [Hir15]). A selector for a language L is a randomized polynomial time algorithm that,
on input x and with access to two oracles A and B such that at least one is promised to decide L correctly on
every input, outputs L(x) with high probability.

Lemma 4 (Hirahara [Hir15]). There exists a selector for any EXPNP-complete language.

Lemma 5 (Hirahara [Hir15]). If there exists a selector for a language, there exists a selector that works even when
given polynomially many oracles, as opposed to just two. Additionally, the length of the largest query asked by
the selector is a fixed polynomial independent of the number of oracles being decided between.

We will defer the proofs of this lemmas until after the main theorem.

Theorem 5 (Hirahara [Hir20]). For any U , EXPNP⊆PRKU .

Proof. First, recall that we showed in Lemma 2 that PRKU =BPPRKU , so it suffices to give a BPPRKU algorithm
for some EXPNP-complete language L. The way we will do so is by constructing (and breaking) a PRG. First, let

Ln be the indicator function of L on strings of length n, and let L̂n be the function whose truth table is obtained
by encoding the truth table of Ln with the locally list-decodable code of Lemma 3. We present the following PRG,
which just breaks up its input into a few chunks and applies L̂n on each of them:

D(x1,...,xk)=
(
x1,...,xk,L̂n(x1),...,L̂n(xk)

)
.

Here, x1,...,xk ∈{0,1}n̂, where n̂=poly(n) is the length of inputs to L̂n, and we choose k=100logn̂. So D
stretches inputs of length 100n̂logn̂ to 100(n̂+1)logn̂. This is a small stretch, but enough that nothing in the
image can be in RKU

, so our oracle always rejects outputs of the PRG even though accepts random strings with
probability at least 1/2. We’re going to show that this distinguisher lets us in randomized poly time find a small
list of circuits such that one of them computes Ln.

Now, we’re going to make a hybrid argument. Define the distribution

Hi=(x1,...,xk,L̂n(x1),...,L̂n(xi),bi+1,...,bk),

where the xj are chosen randomly from {0,1}n̂, and the bj are random bits. H0 is the uniform distribution,
where our distinguisher accepts with probability at least 1/2, and Hk is the PRG’s output distribution, where
our distinguisher always rejects. So, if we choose a uniform random i∈ [k],

Pr
i∼[k]

[distinguisher accepts Hi−1]− Pr
i∼[k]

[distinguisher accepts Hi]≥
1

2k
.

By averaging5, we can conclude that when we randomly fix everything except xi, with decent probability the
distribution still has a decent bias. That is,

Pr
i∼[k]

x1,...,xi−1,xi+1,...,xk

b1,...,bk

[
Pr
xi

[distinguisher accepts Hi−1]−Pr
xi

[distinguisher accepts Hi]≥
1

4k

]
≥ 1

4k
.

This is very good news for us. What we’re trying to do here is find a deterministic algorithm that gets L̂n

correct on substantially more than half it’s inputs, since then we can plug that algorithm into our local list-decoding
procedure. To come up with a candidate for such an algorithm, we’ll do the following:

• Choose i∼ [k], x1,...,xi−1,xi+1,...,xk∼{0,1}n̂, and b1,...bk∼{0,1}. With probability at least 1
4k , we chose “good”

values for these, in the sense that

Pr
xi

[distinguisher accepts (x1,...,xk,L̂n(x1),...,L̂n(xi−1),bi,bi+1...,bk)]−

Pr
xi

[distinguisher accepts (x1,...,xk,L̂n(x1),...,L̂n(xi−1),L̂n(xi),bi+1,...,bk)]≥
1

4k
.

5Here, we’re just applying the general fact that for any function f and random variable y, Ey[f(y)]≤ 1
4k

Pr[f(y)< 1
4k

]+Pr[f(y)> 1
4k

].

10

• Choose random bits a1,...,ai−1. Since we’re running in poly time, we can’t compute the values of L̂n(x1),...L̂n(xi−1)
ourself – but if we guess them at random, there’s a 1

2i−1 ≥ 1
2k

chance that we’ll guess them all correctly.

• Now, the chance that all of our guesses were “good” is at least 1
4k ·

1
2k
, and if we made good guesses we have

Pr
xi

[distinguisher accepts (x1,...,xk,a1,...,ai−1,bi,bi+1,...,bk)]−

Pr
xi

[distinguisher accepts (x1,...,xk,a1,...,ai−1,L̂n(xi),bi+1,...,bk)]≥
1

4k
.

In that case, if we let our algorithm A(x) be “run the distinguisher on (x1,...,xi−1,x,...,xk,a1,...,ai−1,bi,bi+1,...,bk),

outputting bi if it rejects and ¬bi if it accepts”, we’ll have A(x) = L̂n(x) on at least a 1
2 +

1
4k fraction of

x.

Once we’ve run this randomized process, we get out some deterministic algorithmA. The process was “successful”
with probability 1

4k·2k , but we can’t tell yet whether it succeeded or not. Regardless, we can now run the local
list-correcting code’s Dec algorithm, using A to answer the queries. If the first process was successful, then A’s
truth table has distance less than 1

2−
1
4k from L̂n’s truth table, so with high probability over the internal coins of

Dec, this decoding process will be successful, and one of the circuits it returns will be a circuit perfectly computing
Ln. All in all, when we’ve run this whole procedure, we end up with a list of poly(n) many circuits, such that
with probability at least 1

8k·2k one of the circuits perfectly computes Ln. Remembering that k=100logn̂, this

probability is 1
poly(n) . So, by repeating this procedure poly(n) many times and concatenating the resulting lists

together, we end up with a list of poly(n) many circuits, such that except with negligible failure probability the
list contains a circuit computing Ln.

We now describe the BPPRKU algorithm for deciding L. The crucial observation is that, by Lemma 4 and the
fact that L is EXPNP-complete, given two oracles such that at least one is guaranteed to compute L on all inputs, we
can compute L(x) in randomized polynomial time. In our case, we’re trying to decide between poly(|x|) many oracles
as opposed to just two – but by Lemma 5 this is also possible. The other difference is that we’re going to have a list
of circuits, as opposed to arbitrary oracles, and so we will only be able to make a queries of fixed length. However, by
choosing L to be a paddable EXPNP-complete language, we can make do with circuits. Letting N=poly(|x|) be the
length of the largest query the selector would make on input x, we’ll apply the procedure outlined above to get a list
of poly(N) many circuits such that one of them computes LN , and then we’ll use our selector with these circuits as
the oracles (padding the queries as required so that they’re all of lengthN) to determine L(x). Both the circuit listing
process and the selector have negligible error probability, so this algorithm can be implemented in BPPRKU .

We’ll now outline the proofs we skipped about selectors.

Proof of Lemma 4. It is easy to show that if one language has a selector, all poly-time equivalent languages
have selectors, so it suffices to show that a single specific EXPNP language has one. We will consider the
EXPNP-complete language Succinct Lexicographically Maximum 3SAT – this language consists of all pairs (φ,i) such
that φ is a succinctly-encoded 3SAT instance, and i is an index such that the ith bit of the lexicographically
last satisfying assignment to φ is 1. Suppose we have two oracles, A and B, such that either A or B is an
accurate Succinct Lexicographically Maximum 3SAT oracle, and we want to compute the ith bit of the lexicograph-
ically last satisfying assignment to some succinct formula φ. The key perspective is that, because A and B
are (obstensible) oracles for an EXPNP complete problem, by performing poly-time reductions on our queries
we can ask them to answer arbitrary EXPNP questions, not just give us bits from the largest assignment to
φ.

In particular, what we will actually ask each of A and B to do is to compute specific bits of the mul-
tilinear extension of the lexicographically maximum satisfying assignment to φ. Thinking of the original
assignment as a function {0,1}n→{0,1} returning the bit of the assignment at the index given by the input,
the multilinear extension over a large field F is the unique multilinear function Fn→ F that agrees with that
function on {0,1}n-valued inputs. Computing an index into the multilinear extension of the lexicographically
maximum satisfying assignment can be done in exponential time with an NP oracle, so the honest oracle will
do so correctly. Thus, we can think of ourselves as being given two exponentially-long strings representing two

11

purported arithmetizations of the lexicographically maximum satisfying assignment, and trying to randomly
verify which is correct. Our first step will be to run a multilinearity test on each string – if this test fails, we
can safely assume the corresponding oracle was faulty and just trust the other one, but if the test succeeds we
know the string is close to some multilinear function. In order to verify that the multilinear functions the strings
are close to arithmetized satisfying assignments, we follow exactly the proof of MIP=NEXP, arithmetizing the
formula and performing sum-checks. If one of the two strings isn’t close to the multilinear extension of any
satisfying assignment, this will with high probability detect that error (for details, see [BFL90]), and we are
safe to trust the other oracle. The place where new ideas are needed is when both strings represent satisfying
assignments, and we have to determine which is larger. Note that if they both represent the same satisfying
assignment we’ve already won – they will both agree on the index we care about, so we can safely report that
value.

To determine which of two assignments is larger, it suffices to identify the first index on which they disagree. To
do so, we first recall that by self-correction of the Reed-Muller code, given access to a string close to the multilinear
extension, we can output any specific bit of the multilinear extension with good probability. This is important
because we’ll need to make queries to specific locations, and it could be the case that the string is corrupted at
exactly those indices – we’ll use the self-correction to get good success probability no matter what index we’re
looking at. So, we can just consider ourselves as having access to the true multilinear extensions of two assignments.
The next important thing to note is that, since the multilinear extension is unique, checking whether the two
strings represent the same satisfying assignment is equivalent to checking if they’re close to the same multilinear
function. So, we can describe the following binary-search procedure to find the first index z∈{0,1}n where the
assignments differ:

• Choose random values r2,...,rn from F. Check the entries at location (0,r2,...,rn) in both strings. If they match,
set z1=1; otherwise, set z1=0.

• Choose new random values r3,...,rn←F, and query the strings at location (z1,0,r3...,rn). Set z2=1 if the results
agree, and z2=0 if the results disagree.

• Continue until all indices of z are set.

Once we’ve chosen the first j bits of z, we can think of the two polynomials as having been restricted, and the
choice of the ri as querying these restricted polynomials on random inputs. As long as |F| is much larger than n, the
Schwartz-Zippel lemma guarantees that unless the two restricted polynomials are the same, with high probability
we will determine that they are different. If, for some fixed values of z1,...,zj−1, the multilinear polynomials
obtained from each string by fixing the first j bits of the input to (z1,...,zj−1,0) are the same, this means that
the two assignments are the same at every index starting with prefix (z1,...,zj−1,0) – so, if they differ on any index
starting with prefix (z1,...,zj−1), that index must begin (z1,...,zj−1,1). On the other hand, if the two restricted
polynomials aren’t the same, the lexicographically first assignment where they differ must begin (z1,...,zj−1,0). So,
if the two assignments differ on any index, this process will with high probability find the first such index, allowing
us to determine which oracle has the larger satisfying assignment (and, consequently, is the correct oracle).

Proof of Lemma 5. We have polynomially many oracles for L, and want to decide L(x), given the fact that we have
a selector that can decide between two oracles. First, we query every oracle on x, and divide them into two teams
depending on whether they answered YES or NO. Then, choose an arbitrary oracle from team YES and an arbitrary
oracle from team NO, and face them off against each other by feeding them into the pairwise selector. If the pairwise
selector outputs YES, we know that the NO oracle was faulty, and can discard it – similarly, if the pairwise selector
says NO, we can discard the YES oracle. We repeat this process until only oracles from one of the two teams survive,
and output the corresponding value. Since the true oracle will never lose a pairwise selector match, this guarantees
that the correct team wins. Note that the length of the largest question asked in this procedure is the same as the
length of the largest question needed by the pairwise selector, since all we do is run that selector multiple times.

6 What about RC?

The results we’ve stated thus far have all been about the prefix-free complexity RK. We noted good reason for
this – the prefix-free complexity is in several ways a nice object of study than the plain Kolmogorov complexity.

12

But the plain complexity has its advantages, too. Could we have shown similar results in that case, or is there
a fundamental difference?

The good news is that the EXPNP inclusion of Section 5 still holds. Remember that, in that case, we used
the RK oracle to break a PRG with seed n−Θ(logn) – in order to do that, we only needed the RK oracle to be
accurate up to O(log(n)) error. Since the plain complexity and prefix-free complexities never differ by more than
O(logn), this means either will suffice.

The bad news is that nobody knows how to salvage the EXPSPACE containment of Section 3. It was very
important to the construction that we could build a universal machine by finding a prefix-free entropy function,
and Lemma 1 just isn’t true for RC. The proof of computability of

⋂
UP

RKU is based on a similar approach, so we
don’t even know whether

⋂
UP

RCU contains the halting problem. We also don’t know whether
⋃

UP
RCU contains

the halting problem! Last year, Allender included the following in a list of challenges:

Problem 1 (Allender, $1000 bounty [All23]). Find either a universal machine U such that you can prove
Halting∈PRCU , or such that you can prove Halting∉PRCU .

It is known that there exists a universal machine such that Halting∈EEXPRCU , even non-adaptively, but it’s not
clear whether this can be done faster. And it is known that there’s no time bound that suffices for all U under dis-
junctive truth-table reductions – i.e. reductions where the output is just the OR over the responses to all the queries.

Definition 7. A problem A is disjunctive truth-table reducible to B, denoted A≤dttB, if there exists a computable
function F :{0,1}∗→P({0,1}∗) such that

A(x)=
∨

y∈F(x)

B(y).

Theorem 6 (Kummer [Kum96]). For every U, there is some computable time-bound t : N→ N such that
Halting≤t

dttRCU
.

The proof of Theorem 6 involves constructing a sequence of Fi :{0,1}∗→P({0,1}∗) with the guarantee that,
for any U, there is some i such that Fi computes a disjunctive truth-table reduction from the halting problem.
However, the proof gives no explicit computable bound on how large that Fi can be. Allender, Friedman, and
Kouky showed that, at least for some U , this reduction can be done in doubly-exponential time.

Theorem 7 (Allender, Friedman, Kouky [ABK06]). There exists a U such that Halting≤eexp
dtt RCU

.

Proof. Let U be a universal machine such that U(x)≤|x|+1 for all x. The fact that such a U exists is easy: given
any universal machine U ′, we can let

U(bx)=

{
U(x) if b=0

x if b=1
.

Now, we’re going to construct a new machine Uhelpful to help us solve the halting problem. We’ll think of Uhelpful’s
input as being split into a 5-bit “tag” a, a decision bit b, and the main body x. Uhelpful behaves as follows:

Algorithm 1 Uhelpful(abx)

1: if b=0 then
2: y←U(x)
3: Return ay

4: if b=1 then
5: y←U(ax)
6: Treat |y| as a Turing machine and simulate it
7: if |y| halts then
8: Return 00000y

13

It’s easy to see that Uhelpful is universal, since fixing the first bit to 0 just gives U. The important prop-
erty of Uhelpful is that, if |y| doesn’t halt, then CUhelpful

(00000y) = CUhelpful
(11111y), but if |y| does halt then

CUhelpful
(00000y)=CUhelpful

(11111y)−5. So, if we as an algorithm are given x and want to decide Halting(x), we
can check for all y, |y|=x, whether 00000y∈RCUhelpful

. If Halting(x), none of these strings can have full complexity,

but otherwise one of them must, so this gives a disjunctive truth-table reduction.

If we had an oracle for ov(CUhelpful
) – that is, an oracle for CUhelpful

as a function – we could easily use this
approach to decide the halting problem in poly time (just have U ′

helpful simulate Turing machine y instead of |y|,
and then have the algorithm compare CU′

helpful
(00000y) against CU′

helpful
(11111y)). With an oracle for RCUhelpful

,

though, it’s not clear whether this is possible (doing so would solve Problem 1 and win you exciting cash prizes).

However, if you swap the quantifiers in Theorem 6 it’s no longer true, meaning that for instance
⋂

U{A : A≤P
dtt

RCU
}=P.

Theorem 8 (Allender, Buhrman, Kouky [ABK06]). For every computable time-bound t :N→N, there exists U
such that Halting≰t

dttRCU
.

The proof of this theorem actually shows the stronger statement that
⋂

U{A : A≤t
dttRCU

}⊆TIME[t3] – so
when you factor out the universal machine, disjunctive truth table reductions to RCU

really aren’t buying you
anything.

It’s not especially clear what these results should suggest to us about
⋂

UP
RCU . Are these statements about the

power/limitations of RCU
, or just about the power/limitations of disjunctive truth-table reductions? A result about

plain complexity by Hirahara and Kawamura seems to provide some more intuition, suggesting that maybe we
should expect upper bounds like those in Section 3 to hold for the plain complexity. We give the following definition:

Definition 8. A reduction is α-honest for some function α :N→N if, on inputs of length n, it makes no oracle
queries of length less than α(n). We write A≤tt,αB to denote existence of an α-honest truth table reduction from
A to B. If a reduction is α-honest for some polynomial α, we call it polynomially honest, and if it is α-honest
for some super-constant α we call it weakly honest.

Hirahara and Kawamura showed that, if you restrict to weakly honest reductions, the results of Section 3
extend to plain complexity.

Theorem 9 (Hirahara, Kawamura [HK18]). For any unbounded monotonic function α :N→N,⋂
U

{A :A≤P
tt,αRCU

}⊆PSPACE

The proof structure is very similar to the proofs in the prefix-free case. The honesty condition is important
to the reduction to ensure that, for any given reduction, a specific x can only be relevant to a finite number of
the games. However, weak honesty seems like perhaps a rather weak property for a reduction to satisfy, so this
gives some evidence that the plain complexity is not such a wildly different world from the prefix-free.

7 What good is an approximation?

As we mentioned in the previous section, the only thing we needed to get EXPNP was an oracle computing an
additive log(n) approximation of RKU

– that is, an oracle that accepts strings with Kolmogorov complexity at
least n, and rejects strings with Kolmogorov complexity less than n−O(logn), but is allowed to do whatever it
wants on strings with complexity in-between. The idea of reducing to an arbitrary approximate RK oracle is a
rather attractive one, since as long as the error window for the approximation is larger than order log(n), this
masks differences not just over which specific universal machine U we define RK based on, but also whether we’re
using the plain or the prefix-free complexity 6.

6A note: it is somewhat easier to think, in this setting, of the threshold for RK as being set at n/2 as opposed to near n – that is
RK={x : K(x)≥|x|/2}. The exact place you put this threshold usually doesn’t matter, since you can just pad with random bits of your
own to even things out, but it might be a little awkward to think about what error bounds are allowed to look like at the upper ends.

14

In 2022, Saks and Santhanam showed a sharp tradeoff in how useful such an oracle is [SS22]. We know from
Section 5 that, with an oracle for any log(n) additive approximation to RKU

, a deterministic poly-time algorithm
can do all of EXPNP. Saks and Santhanam show, however, that if the error window is any larger, the oracle is useless.

Theorem 10. If a language L is solvable in poly-time by an algorithm with each oracle for approximations
R̃K(x)=RK(x) of some fixed additive error margin e=ω(log(n)), then L∈P.

They also showed an upper bound of AM∩coAM on the power of non-adaptive randomized reductions, and an
upper bound of SZK (Statistical Zero Knowledge) on the power of randomized m-reductions, under the condition
that the reductions are polynomially honest (see Definition 8). The latter of these is somewhat surprising – SZK is a
notion coming from cryptographic proofs, what is it doing here? However, a subsequent paper by Allender, Hirahara,
and Tirumala showed that the appearance of SZK as an upper bound was no accident. First, some definitions.

Definition 9. The class SZK consists of promise problems with statistically hiding interactive proofs. That is,
where a probablistic verifier interacting with an unbounded prover can decide the language with bounded error, but
in such a way that on YES instances, without the help of the prover, the verifier could sample from a distribution of
interaction transcripts that’s statistically close to what this protocol gives. An example is graph non-isomorphism:
the verifier sends a random permutation of a random one of the two graphs, and expects the prover to correctly
identify which one it was.

Definition 10. The class NISZK is the class of promise problems with non-interactive statistical zero-knowledge
proofs. That is, the prover and verifier both see some random coins flipped by a (trusted) external source, and then
the prover sends a single message to the verifier, which should convince the verifier of the answer with bounded
error probability. The zero-knowledge condition required is that the verifier should be able to reproduce on their
own something statistically close to the joint distribution of prover messages and external random strings.

These classes can also be natural described in terms of their complete problems:

Definition 11. The promise problem Statistical Distance (SD) is defined over pairs of circuits (A,B), where
• if the statistical distance between the output distributions on A and B is larger than 2/3, (A,B) is a YES instance
• if the statistical distance between the output distributions on A and B is smaller than 1/3, (A,B) is a NO instance.
Sahai and Vadhan showed that SD is complete for SZK [SV00].

Definition 12. The promise problem Entropy Approximation (EA) is defined over circuitsX and values k, where
• if the output distribution of X has entropy H(X)>k+1, (X,k) is a YES instance
• if the output distribution of X has entropy H(X)<k−1, (X,k) is a NO instance.
Goldreich, Sahai and Vadhan showed that EA is complete for NISZK [GSV99].

Using the completeness of these problems, Allender, Hirahara, and Tirumala were able to show exact char-
acterizations of both SZK and NISZK in terms of reductions to R̃K. This is rather exciting – it shows that, at least
if we put enough adjectives in front of everything, the answer to the question of “what can be efficiently reduced
to the random strings” coincides with classes people have actually studied and care about. The result is as follows:

Theorem 11 (Allender, Hirahara, Tirumala [AHT23]). Taking the intersection over all oracles R̃K that are within
an additive error of e from RK on every input, for some fixed ω(log(n))≤e(n)≤no(1), we have that

• {A : A ≤RP
hm R̃K} = NISZK, where ≤hm denotes an m-reduction that’s polynomially honest, in the sense of

Definition 87.
• {A : A≤RP

hbf R̃K}=SZK, where ≤hbf denotes an honest boolean formula reduction – i.e. an honest reduction
computable by uniform boolean formulas.

Proof sketch. We will sketch the first statement; the second follows a fairly similar outline. The first step, which
we’ll omit, is to show that the following variant of EA is also NISZK-complete, which is done by reduction from EA:

Definition 13. The language EA′ is defined over circuits X, where (identifying the circuit with its output
distribution on uniform input)

7We define an RP m-reduction to be one which maps all NO instances to NO instances, and YES instances to YES instances
with probability at least 1

nω(1) . Note that both of these statements, and the proof we outline, also hold for BPP reductions, i.e. where

NO instances just have to map to NO instances with probability at least 1
nω(1) .

15

• if H(X)>n−2, X is a YES instance

• if |Supp(X)|≤2n−n0.99

, X is a NO instance (where Supp(X) denotes the support of the distribution).

Note that these conditions are indeed mutually exclusive, since H(X)≤ log(|Supp(X)|).

First, we show a randomized honest m-reduction from EA′ to R̃K. We’re given some circuit C as our input,
and want to determine which of the conditions holds. To do so, we’ll just take some large polynomial t=100n100

many random samples x1,...,xt∼X, and query the R̃K oracle on (x1,...,xt). If H(X)>n−2, then it’s possible
to show that the typical set is large enough that except with negligible probability this will produce a string of
Kolmogorov complexity at least t(n−3). However, if the support of X is smaller than 2n−n0.99

, it is impossible for
this to produce a string of Kolmogorov complexity more than t(n−4) – every output will have a shorter description

in terms of X. By appropriately padding with randomness, we can use our R̃K oracle to distinguish these two
cases.

For the other direction, we start with some RP circuit C that computes an honest m-reduction to R̃K, and
want to show that the language the reduction computes is in NISZK. That is, C takes as input some (x,r), where
x is a problem instance and r are random coins, and outputs a string y∈{0,1}m intended as an oracle query to

R̃K
8. Let Cx denote the restricted circuit computing C(x,·) – our goal will be to show that, if Cx does represent

a valid RP reduction to R̃K, we can determine the output of the reduction by computing EA(Cx). Recall that,
for Cx to be a correct reduction, if we take y drawn from Cx’s output distribution, we must have either

Pr[K(y)>m/2−e(m)]≤ 1

nω(1)

or

Pr[K(y)<m/2+e(m)]≤ 1

nω(1)
,

and our goal is to tell which is which.

Claim 1. If Pr[K(y)>m/2−e(m)]≤ 1
nω(1) , then H(Cx)≤m/2−e(m)−1. That is, small expected Kolmogorov

complexity means small entropy.

Claim 2. If Pr[K(y)<m/2+e(m)]≤ 1
nω(1) , then H(Cx)≥m/2−e(m)+1. That is, big expected Kolmogorov

complexity means big entropy.

To prove these two claims, we go by contradiction – let x∗ be the lexicographically first x violating one of
the two claims. Note that this ensures K(x∗)≤O(log(n)), since C has a uniform description, and the property
of violating one of the claims is computable9.

Case 2.1. x∗ violates Claim 1.

For x∗ to violate Claim 1, we must have that Pr[K(y)>m/2−e(m)]≤ 1
nω(1) , and also H(Cx∗)>m/2−e(m)−1.

But the number of strings y with K(y)≤m/2−e(m) is only at most 2m/2−e(m) by counting programs, which
would let us upper bound H(Cx∗)≤m· 1

nω(1) +log(2m/2−e(m))·
(
1− 1

nω(1)

)
≤m/2−e(m)−1.

Case 2.2. x∗ violates Claim 2.

For x∗ to violate Claim 2, we must have that Pr[K(y)<m/2+e(m)]≤ 1
nω(1) , and also H(Cx∗)<m/2−e(m)+1.

But now, recall that x∗ has a short description. This means that the 2m/2+e(m)−O(logn) highest probability
elements of Cx∗’s output distribution must have Kolmogorov complexity at most m/2+ e(m), since we can
specify them by giving x∗ and their ranking in terms of highest probability. But now, we can lower bound
H(Cx∗)≥1· 1

nω(1) +
(
m/2+e(m)−O(logn)+log(nω(1))

)(
1− 1

nω(1)

)
≥m/2+e(m)+1.

Having established Claim 2 and Claim 1, we now have a poly-time m-reduction from determining the value
of this reduction to R̃K to EA. Since NISZK is closed under poly-time m-reductions, this completes the proof.

8We can assume without loss of generality that m is well-defined here – that is, that all queries are the same length – by appropriate
padding.

9This is using the fact that the language being decided is computable – we can’t compute the response from the RK oracle directly,
but we can determine what it was supposed to be.

16

We note, finally one interesting application of this line of thought. Allender, Hirahara, and Tirumala showed
that, in addition to the results we mentioned above, NISZKL (the log-space bounded version of NISZK) can be

characterized by projection reductions to R̃K – that is, reductions computable by a nonuniform circuit family
containing only NOTs, wires, and constants. One consequence of this, since the minimum time-bounded Kolmogorov
problem MKTP lies in NP, is that, if NISZKL=NP, there must exist some non-uniform projection that takes strings
of large KT complexity to strings of low K complexity, and strings of small KT complexity to strings of large
K complexity 10. If that sounds like an implausible thing to exist, then maybe ruling it out is a potential approach
to separating NISZKL from NP (which would, among other things, separate NL and NP). This is an ambitious
goal, but as far as the authors of this survey are aware there is no known barrier yet making it impossible11.

8 Conclusion

The power of reductions to the random strings is an interesting question, albeit perhaps a strange one. Some of
the most exciting open directions along these lines are:
• To what extent can “honesty” conditions be removed, either in the approximation results of Section 7, or in
the upper bound on time-bounded reductions to RCU

of Theorem 9? Note that if the latter could be removed,
this would mean all our known bounds on

⋂
UP

RKU also apply to
⋂

UP
RCU . It is, however, also possible that

honesty is fundamentally necessary for these results – if so, it would be interesting to explore how and why these
classes change when it’s relaxed.

• Can we improve either bound on
⋂

UP
RKU ? There’s potentially a good amount of room between EXPNP and

EXPSPACE. Both bounds are at pretty natural limits of known techniques, however. The EXPNP barrier seems
perhaps more plausible to surpass – the proof of EXPSPACE came from a very natural strategy of reduction
involving playing games; it’s quite unclear what would have to happen to show a smaller bound.

• Is Allender’s magic mirror (alluded to at the end of Section 7) likely to exist? If not, are there any barriers
towards proving its nonexistence, or is this in fact a plausible proof approach towards showing NL≠NP? If we
can’t either rule it out or show it exists, can we get any interesting implications from its existence?

• Are there other randomized complexity classes with natural descriptions in terms of reductions to the random
strings? The fact that NISZK and SZK have such characterizations is very interesting. There was once hope
that BPP was characterized by poly-time truth-table reductions to RK, but recent results have made this much
less plausible – maybe there is still a different natural characterization.

References

[ABK06] Eric Allender, Harry Buhrman, andMichal Koucký. “What can be efficiently reduced to the Kolmogorov-
random strings?” In: Annals of Pure and Applied Logic 138.1 (2006), pp. 2–19. issn: 0168-0072. doi:
https://doi.org/10.1016/j.apal.2005.06.003. url: https://www.sciencedirect.com/
science/article/pii/S0168007205000849.

[AFG13] Eric Allender, Luke Friedman, and William Gasarch. “Limits on the computational power of random
strings”. In: Information and Computation 222 (2013). 38th International Colloquium on Automata,
Languages and Programming (ICALP 2011), pp. 80–92. issn: 0890-5401. doi: https://doi.org/
10.1016/j.ic.2011.09.008. url: https://www.sciencedirect.com/science/article/pii/
S0890540112001472.

[AHT23] Eric Allender, Shuichi Hirahara, and Harsha Tirumala. “Kolmogorov Complexity Characterizes Statis-
tical Zero Knowledge”. In: 14th Innovations in Theoretical Computer Science Conference, ITCS 2023,
January 10-13, 2023, MIT, Cambridge, Massachusetts, USA. Ed. by Yael TaumanKalai. Vol. 251. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, 3:1–3:19. doi: 10.4230/LIPICS.ITCS.2023.3.
url: https://doi.org/10.4230/LIPIcs.ITCS.2023.3.

10The first author of this survey would like such a projection to be called “Allender’s magic mirror”. However it’s not clear this
name will catch on.

11Of course, this is probably largely because it has not had a huge amount of thought devoted to it as an approach. But hey, worth
a shot.

17

https://doi.org/https://doi.org/10.1016/j.apal.2005.06.003
https://www.sciencedirect.com/science/article/pii/S0168007205000849
https://www.sciencedirect.com/science/article/pii/S0168007205000849
https://doi.org/https://doi.org/10.1016/j.ic.2011.09.008
https://doi.org/https://doi.org/10.1016/j.ic.2011.09.008
https://www.sciencedirect.com/science/article/pii/S0890540112001472
https://www.sciencedirect.com/science/article/pii/S0890540112001472
https://doi.org/10.4230/LIPICS.ITCS.2023.3
https://doi.org/10.4230/LIPIcs.ITCS.2023.3

[All+06] Eric Allender et al. “Power from Random Strings”. In: SIAM Journal on Computing 35.6 (2006),
pp. 1467–1493. doi: 10.1137/050628994. eprint: https://doi.org/10.1137/050628994. url:
https://doi.org/10.1137/050628994.

[All23] Eric Allender. “Guest Column: Parting Thoughts and Parting Shots (Read On for Details on How
to Win Valuable Prizes!” In: SIGACT News 54.1 (Mar. 2023), pp. 63–81. issn: 0163-5700. doi:
10.1145/3586165.3586175. url: https://doi.org/10.1145/3586165.3586175.

[BFL90] L. Babai, L. Fortnow, and C. Lund. “Nondeterministic exponential time has two-prover interactive
protocols”. In: Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science. 1990,
16–25 vol.1. doi: 10.1109/FSCS.1990.89520.

[Buh+05] Harry Buhrman et al. “Increasing Kolmogorov Complexity”. In: STACS 2005. Ed. by Volker Diekert
and Bruno Durand. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 412–421. isbn: 978-3-540-
31856-9.

[Cai+14] Mingzhong Cai et al. “Random strings and tt-degrees of Turing complete C.E. sets”. In: Logical Methods
in Computer Science [electronic only] 10 (Aug. 2014). doi: 10.2168/LMCS-10(3:15)2014.

[GSV99] Oded Goldreich, Amit Sahai, and Salil Vadhan. “Can Statistical Zero Knowledge be made Non-
Interactive? or On the Relationship of NISZK”. In: vol. 6. Dec. 1999, pp. 791–791. isbn: 978-3-540-
66347-8. doi: 10.1007/3-540-48405-1_30.

[Hir15] Shuichi Hirahara. “Identifying an Honest EXPNP Oracle Among Many”. In: 30th Conference on
Computational Complexity (CCC 2015). Ed. by David Zuckerman. Vol. 33. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2015, pp. 244–263. isbn: 978-3-939897-81-1. doi: 10.4230/LIPIcs.CCC.2015.244. url:
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2015.244.

[Hir20] Shuichi Hirahara. “Unexpected hardness results for Kolmogorov complexity under uniform reductions”.
In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing. STOC 2020.
Chicago, IL, USA: Association for Computing Machinery, 2020, pp. 1038–1051. isbn: 9781450369794.
doi: 10.1145/3357713.3384251. url: https://doi.org/10.1145/3357713.3384251.

[HK18] Shuichi Hirahara and Akitoshi Kawamura. “On characterizations of randomized computation using
plain Kolmogorov complexity”. English. In: Computability 7.1 (2018). Publisher Copyright: © 2018 -
IOS Press and the authors. All rights reserved., pp. 45–56. issn: 2211-3568. doi: 10.3233/COM-170075.

[Kum96] Martin Kummer. “On the complexity of random strings”. In: STACS 96. Ed. by Claude Puech and
Rüdiger Reischuk. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 25–36. isbn: 978-3-540-
49723-3.

[MP02] Andrei A. Muchnik and Semen Ye. Positselsky. “Kolmogorov entropy in the context of computability
theory”. In: Theor. Comput. Sci. 271.1-2 (2002), pp. 15–35. doi: 10.1016/S0304-3975(01)00028-7.
url: https://doi.org/10.1016/S0304-3975(01)00028-7.

[SS22] Michael Saks and Rahul Santhanam. “On randomized reductions to the random strings”. In: Proceedings
of the 37th Computational Complexity Conference. CCC ’22. Philadelphia, Pennsylvania: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2022. isbn: 9783959772419. doi: 10.4230/LIPIcs.CCC.
2022.29. url: https://doi.org/10.4230/LIPIcs.CCC.2022.29.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. “Pseudorandom Generators without the XOR
Lemma”. In: Journal of Computer and System Sciences 62.2 (2001), pp. 236–266. issn: 0022-0000. doi:
https://doi.org/10.1006/jcss.2000.1730. url: https://www.sciencedirect.com/science/
article/pii/S0022000000917306.

[SV00] Amit Sahai and Salil Vadhan. A Complete Problem for Statistical Zero Knowledge. Cryptology ePrint
Archive, Paper 2000/056. https://eprint.iacr.org/2000/056. 2000. url: https://eprint.iacr.
org/2000/056.

18

https://doi.org/10.1137/050628994
https://doi.org/10.1137/050628994
https://doi.org/10.1137/050628994
https://doi.org/10.1145/3586165.3586175
https://doi.org/10.1145/3586165.3586175
https://doi.org/10.1109/FSCS.1990.89520
https://doi.org/10.2168/LMCS-10(3:15)2014
https://doi.org/10.1007/3-540-48405-1_30
https://doi.org/10.4230/LIPIcs.CCC.2015.244
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2015.244
https://doi.org/10.1145/3357713.3384251
https://doi.org/10.1145/3357713.3384251
https://doi.org/10.3233/COM-170075
https://doi.org/10.1016/S0304-3975(01)00028-7
https://doi.org/10.1016/S0304-3975(01)00028-7
https://doi.org/10.4230/LIPIcs.CCC.2022.29
https://doi.org/10.4230/LIPIcs.CCC.2022.29
https://doi.org/10.4230/LIPIcs.CCC.2022.29
https://doi.org/https://doi.org/10.1006/jcss.2000.1730
https://www.sciencedirect.com/science/article/pii/S0022000000917306
https://www.sciencedirect.com/science/article/pii/S0022000000917306
https://eprint.iacr.org/2000/056
https://eprint.iacr.org/2000/056
https://eprint.iacr.org/2000/056

	Introduction
	Friendly discussion
	Outline of the survey

	Preliminaries
	The K-random strings won't let you beat EXPSPACE
	What if you're a circuit? What if you're randomized?
	The K-random strings will let you do EXPNP
	What about RC?
	What good is an approximation?
	Conclusion

