
18.218 Project (Limits of Preprocessing)

Nathan Sheffield and Isabel McGuigan

Apr 2024

1 Introduction

It is known that sub-exponential size AC0 circuits – i.e. circuit families of constant depth and a subexpo-
nential number of gates – can’t compute the inner product function. However, known proof techniques (re-
lying on random restrictions) fail if the two inputs to the inner product are allowed arbitrary preprocessing.
That is, suppose an all-powerful Alice is given input x and outputs some arbitrary function f(x), and an
all-powerful Bob is given input y and outputs some arbitrary function g(y). Is it possible that there ex-
ists a family of poly-size, constant depth circuits that computes ⟨x,y⟩ on input f(x),g(y)? It seems pretty
absurd that this could be the case – the difficulty of inner product seems like it comes from combining
the two inputs, as opposed to computing a hard function on either half. It doesn’t seem especially plau-
sible that there should be an encoding of the inputs that makes it substantially easier. However, proving
that AC0 circuits can’t compute inner product under any poly-length input encoding remains an open prob-
lem.

We should note that there absolutely are functions on two inputs where being able to preprocess the two
inputs into arbitrary encodings makes the problem much easier. For instance, the problem of computing the
parity of the number of 1s in x and y together is known to require exponential-size AC0 circuits. However, if
arbitrary preprocessing of x and y independently is allowed the problem becomes trivial: let f(x)=PARITY(x)
and g(y)=PARITY(y), so that the AC0 circuit on f(x) and g(y) just needs to compute the XOR of its two input
bits. The IPPP (inner product with preprocessing) conjecture says that these kind of hacks aren’t possible for
inner product.

In this project, we’ll summarize a recent work of Filmus, Ishai, Kaplan, and Kindler, where they prove a weak
version of these sorts of lower bounds [Fil+20]. Specifically, they show that if one input’s length is extended by an
arbitrary polynomial amount under the preprocessing but the other is extended by only a tiny sublinear stretch (from
length n to n+nα for 0≤α<1), then no subexponential-size AC0 circuit can compute inner product even given that
encoding. They also show that these hardness results hold for (cryptographic) weak PRFs as well as rounded inner
product functions. Finally, they connect the IPPP conjecture to other cryptographic statements by showing that
cryptographic assumptions imply either versions of the IPPP conjecture or hardness results for learning AC0 circuits.

1.1 Communication Complexity

Maybe the most interesting characterization of the goal of this line of work is in communication complexity. A
communication protocol for a function on two inputs is a strategy for two all-powerful parties to exchange messages
back and forth and eventually compute the function. That is, Alice is given input x, Bob is given input y, and
they take turns sending messages until one of them has enough information to report the value of the function
on inputs x and y. A protocol is considered “efficient” if Alice and Bob only have to exchange polylog many bits
before they’re guaranteed to be able to output the answer – this is the communication complexity analogue of
P, and so is denoted Pcc.

We can also define a communication version of the polynomial hierarchy, denoted PHcc [BFS86]. Here, two
competing provers with knowledge of x and y interact for k rounds, sending polylog many bits in total, and Alice

1

and Bob must each decide whether to accept or reject the transcript of their interaction. The YES prover should
be able to make them both accept whenever their inputs are a yes instance of the problem, and the NO prover
should be able to make one of them reject whenever their inputs are a no instance of the problem. The relation
to the standard polynomial hierarchy should be clear: the polynomial hierarchy can also be described in terms of
verifying transcripts of a constant-round game between two all-powerful provers, except in that case the verification
is done by a single time-bounded verifier.

How is PHcc related to the IPPP conjecture? This comes from the following lemma:

Lemma 1. PHcc is precisely the set of functions computable by quasi-polynomial sized AC0 circuits with arbitrary
independent preprocessing of both inputs.

Proof. Suppose there exists a quasi-polynomial size AC0 circuit whose bottom layer inputs are arbitrary func-
tions of either x or y alone. In the corresponding protocol, we imagine the two provers walking down from
the output gate, taking turns deciding which child to step down to, with the YES prover acting on OR gates
and the NO player acting on AND gates. This is a constant number of rounds of players saying polylog length
messages, so the transcript has length polylog. If the circuit is satisfied, the YES player has a strategy that
ensures this process will end up in a bottom-layer input with value 1, and otherwise the NO player can ensure
we end up in an input with value 0. So, all Alice and Bob have to do after seeing this transcript is verify that
it’s a valid walk down the circuit, then evaluate the function at the bottom-level input it reaches. Since these
bottom-level input functions depend on only one of x and y, one of them will be able to compute it and report
the answer.

For the other direction, suppose there exists a PHcc protocol. Build a circuit starting from the output gate
corresponding to the game tree of the prover’s interaction. That is, the tree has a node for all the 2polylog possible
partial transcripts of the interaction, with edges from each node to all nodes reachable in a single player’s turn.
At the bottom of this tree, the winner of the game is decided by some arbitrary function of x ANDed with some
arbitrary function of y. Pre-process x and y to replace each with the list of all those relevant function values. Now,
label nodes of the circuit where the YES player moves with OR and nodes where the NO player moves with AND;
the output of this circuit will be 1 if and only if the YES player had a winning strategy.

So, proving that a function f /∈PHcc is equivalent to proving that it doesn’t have quasipolynomial AC0 circuits
with preprocessing. It’s a major open question whether inner product lies in PHcc; this paper can be seen as a
step towards resolving in the negative, showing impossibility when one of the inputs is processed only very slightly.

1.2 Cryptography

At first, it might be unclear why it’s interesting that these results hold for weak PRFs as well as inner product.
A weak pseudorandom function (PRF) is a function of one input and one “key”, such that if the key is fixed
to one random value and the function is fed a stream of random inputs, no poly-time adversary can distinguish the
outputs of the function from a truly random function on those inputs. This sounds like a much, much more difficult
sort of thing to compute than the inner product – we don’t even know for sure that such functions are computable in
P/poly. However, there has been substantial interest in the cryptography world in trying to construct cryptographic
primitives in the simplest complexity classes possible, and there are indeed some very simple functions that have
been proposed as candidate weak PRFs. For instance, the rounded inner product mod 6 – that is, the function

h :{0,1}n×{0,1}n→{0,1},

hk(x)=

{
0 if ⟨k,x⟩ mod 6 ∈{0,1,2}
1 if ⟨k,x⟩ mod 6 ∈{3,4,5}

(*)

has been proposed as a weak PRF candidate [Bon+18]. Of course, this is not a strong PRF – if an adversary is
allowed to make arbitrary queries to hk as opposed to just seeing it on random inputs, they can easily distinguish
it from a random function. But it could plausibly be a weak PRF – and for many cryptographic applications weak
PRFs suffice. Note that this function is computable by constant-depth, poly-size circuits if the circuits are given
mod 6 gates (i.e. the class AC0[6]), but not computable in AC0 without mod 6 gates. In fact, there’s a known

2

impossibility result for weak PRFs computable by AC0 circuits, at least if you want better than quasipolynomial
security (i.e. you want the function to fool quasipolynomial-size circuits as opposed to just poly-size ones). This
impossibility result comes from a learning algorithm for AC0: given samples of any AC0 function on quasipoly-
nomially many inputs, it’s possible to compute an approximation that very closely matches the function on future
inputs [LMN93] – if the function continues to align with our approximation, we know it probably wasn’t truly
random.

If you really wanted to do cryptography in AC0, this impossibility result would make you pretty sad – you
might look for some way to circumvent it. One option that’s been proposed is that of an encoded-input
PRF [Bon+18]: maybe there exist poly-time computable functions f and g and an AC0-computable function h
such that hf(k)(g(x)) is a (strong or weak) PRF. This could be basically as good as a PRF in AC0 for efficient
cryptography reasons: when you’re choosing your random key you have to do some arbitrary poly-time compu-
tation to generate the AC0 circuit computing hf(k), but then whenever somebody wants to evaluate your PRF
on x, you just ask them to first encode the input with g (which they can do, because g doesn’t depend on k
and thus can be made public), and then you can do the PRF evaluation with your super efficient AC0 circuit
1.

The results of Filmus, Ishai, Kaplan, and Kindler show that, if one of f and g extends by only a small sublinear
amount, AC0 can’t compute encoded-input PRFs (even weak ones) with exponentially good security (i.e. fooling
exponentially large adversaries). If their results could be extended to the case where both f and g have polynomial
stretch, it would rule out exponentially-secure encoded-input PRFs in AC0 altogether.

1.3 Overview of Results

In Section 2, we’ll sketch the proof of the main technical tool of the paper, which is the result due to Linial,
Mansour, and Nisan, and its later quantititative strengthening by Tal, that functions with small AC0 circuits
are well-approximated by low-degree polynomials (i.e. have small high-degree Fourier mass). This is what will
let us thinking about the problem as a Boolean function analysis problem – we won’t worry about any of the
other details about the circuits, instead just proving the results for functions with small high-degree Fourier
mass.

In Section 3, we’ll give a simple proof of the IPPP conjecture when one of the inputs isn’t extended at all.
The idea is that, if we had a small AC0 circuit for this preprocessed inner product, by hardwiring each possible
extended input we can get 2n many small AC0 circuits whose corresponding functions are all orthogonal to
each other. But then by the LMNT theorem we would know that all of these functions are close to low-degree
polynomials, and the space of low-degree polynomials has too small a dimension to have that many orthogonal
functions.

In Section 4, we show that this simple proof idea can in fact be applied in much more general settings, by
showing that hardwiring the arbitrarily-extended input yields a class of functions in which many are pretty close
to orthogonal. This immediately implies the main result for inner product (i.e. inner product doesn’t have AC0

circuits with preprocessing as long as one input’s preprocessing only gives a small sublinear stretch). In Section 5.1
and Section 5.2, we show that the hypotheses of this more general statement hold for any weak PRF, or any
rounded inner-product function (defined in Section 5.2).

Finally, in Section 6, we mention an interesting argument showing that either
• the rounded mod 6 inner product function we mentioned earlier fails to be a weak PRF,
• the IPPP conjecture holds,
• the IPPP conjecture holds mod 3, or
• AC0 can’t be learned in subexponential time from random samples over a worst-case sampleable distribution.

1One caveat of this definition is that security could be totally broken if the PRF is queried on an improperly-encoded input (i.e.
something not in the image of g). Boneh et al extend the definition to protected encoded-input PRFs, where there also exists an
AC0 circuit to verify whether an input is encoded properly, and give some heuristic evidence that protected encoded-input PRFs
are approximately as strong an assumption as encoded-input PRFs.

3

Any of these hypotheses sound very plausible – but despite some effort none are known individually. So it’s
interesting that we can prove at least one must hold.

2 Functions in AC0 are close to low degree

The main ingredient in the analysis is a bound on the high-degree Fourier mass of an AC0 circuit.

Theorem 1 (Linial, Mansour, Nisan [LMN93], Tal [Tal17]). Let f be a Boolean function computable by an AC0

circuit of depth h and size M . Then for any integer t,

||f≥t||2≤2·2−t/Oh(logM)h−1

.

In other words, f is approximated by a function of degree Oh(log
h−1M).

This theorem is a quantitative improvement on the original result of Linial, Mansour and Nisan. We will sketch
the proof of the original bounds, and then very roughly outline how the improvement worked. In both cases, the
key tool is a variant of the famous H̊astad switching lemma.

Lemma 2 (H̊astad, see O’Donnell’s textbook). Suppose f is computable by either a DNF or CNF of width (i.e.
maximum clause size) at most w. Then, for any k, a p-random restriction of f will be computable by a decision
tree of depth k except with probability at most (5pw)k.

We will omit the proof of this lemma; a proof by clever counting argument due to Razborov can be found in
Arora and Barak’s textbook. Instead, we will explain how this can use this to show that the Fourier mass of the
function computed by a low-depth circuit is concentrated on low levels.

Theorem 2 (Linial, Mansour, Nisan [LMN93]; see O’Donnell’s textbook). Let f be a Boolean function computable
by an AC0 circuit of depth h and size M . Then for any integer t,

||f≥t||2≤M ·2−Ω(t1/h).

Proof. Let ε = M · 2−Ω(t1/h), so that t = O(log(M/ε))h−1 · log(1/ε). In order to show that f has less than
ε mass above level t, we’ll need to argue a version of H̊astad’s switching lemma for larger depth circuits, as
opposed to just 2. Suppose we have a depth h, size M, width w (where width refers to the fan-in on the
bottom layer) circuit, and we hit it with a 1

10w -random restriction. Looking at the bottom two layers of the
circuit2, we can observe that any gate on the second-to-bottom layer is computing a depth-2 circuit function
of width w. So, fixing a parameter ℓ= log(M/2ε), By H̊astad’s switching lemma the probability that a given
second-to-bottom gate’s output isn’t described by a depth-ℓ decision tree is at most (1/2)ℓ. As long as this bad
event doesn’t happen for any gate on the second-to-bottom layer, we could replace all of them with depth-ℓ decision
trees.

But now, note that a depth-ℓ decision tree can be represented by both a width-ℓ CNF and a width-ℓ DNF
(either take the OR over all accepting paths of the AND of variables on the path, or the AND over all rejecting
paths of the OR of negations of variables on the path). So, assuming no bad events happened, we can switch the
bottom two layers from ANDs of ORs to ORs of ANDs (or vice-versa). After this switching has been done, we
can combine the 2nd and 3rd layers (we’re doing either ANDs of ANDs or ORs of ORs, so can merge them) to
now have a circuit with depth-(h−1) and width ℓ. We can now do another 1

10ℓ random restriction to decrease
the depth again – if we repeat this process a total of h−2 times, assuming no bad event ever occurs, the entire
remaining circuit will now be depth 2.

Each gate in the tree has at most one opportunity to cause a bad event, and this event happens with probability
at most (1/2)ℓ, so by union bound the probability of any bad event occurring is at most M ·2−ℓ = ε/2. Now,
performing another 1

10ℓ-random restriction will reduce the entire circuit to a depth-log(2/ε) decision tree with

2We should mention that in this proof we’re assuming that the circuit is layered, so that all nots appear at the bottom and layers
alternate between all ANDs and all ORs – this is without loss of generality at cost of a constant increase in circuit depth.

4

failure probability at most ε/2. Note that this series of random restrictions is equivalent to performing one giant
1

10w

(
1
10ℓ

)h−2
-random restriction.

Ok, now let’s show our main claim. We can’t immediately apply this multi-level switching lemma, because
the circuit might have very large width – first step is to reduce the width of the circuit to ℓ. We can do so simply
by looking at every gate on the first level with more than ℓ inputs, and cutting all but ℓ of the incoming wires
– it can be seen that this has negligible effect on the Fourier mass of the function, because the inputs to such wide
gates are each individually very non-influential.

Now, we know that after performing a
(

1
10ℓ

)h−1
-random restriction, with probability at least 1−ε the whole

circuit will reduce to a depth-log(2/ε) decision tree. A depth-log(2/ε) decision tree computes a function of degree at
most log(2/ε)≤t, so if it does reduce to such a decision tree the circuit will end up with 0 Fourier mass above level t.

Thus, the expected high-degree (≥t) Fourier mass after a
(

1
10ℓ

)h−1
-random restriction is at most ε. We know that

Ef′∼p-random restriction of f [
∑

|S|≥kf̂
′(S)2]=

∑
Pr[S has ≥k living variables after restriction]·f̂(S)2. Using a Cher-

noff bound, we can use this to show that f has Fourier mass at most 3ε on degrees larger than 3ℓ/
(

1
10ℓ

)h−1
=O(t).

The stronger bounds come from a more powerful version of H̊astad’s switching lemma, which shows that by
performing one random restriction followed by one carefully-chosen restriction we can with high probability reduce
a large number of depth-2 circuits to decision trees simultaneously. Plugging this sort of lemma into a similar proof
strategy will allow for better probability bounds and thus tighter control on the Fourier mass.

3 A proof of IPPP when only one input length is extended

With the LMNT bound in hand, we can, without too much trouble, obtain the main result on the inner product
in the special case where one of the input lengths is not extended at all. (The stronger main result will allow
this length to be extended up to n+nα; however, we present the proof of this special case because it gives good
intuition for how the proof of the main result will work.)

Theorem 3. Let IP(x,y) be the mod-2 inner product. Suppose there exists an AC0 circuit C of depth h and size
M with arbitrary preprocessing functions A,B such that C(A(x),B(y))=⟨x,y⟩. If B maps {0,1}n→{0,1}n, then
C must have exponential size; in particular,

M≥2Ωh(n1/(h−1)).

Proof. For a fixed x∈{0,1}n, define the function Cx :{0,1}n→{0,1} by Cx(y)=C(A(x),y). The proof consists
of three steps:

1. Find a collection of orthogonal functions gx :{0,1}n→{0,1} such that gx agrees with Cx.
2. Find a specific function gx with small low-degree Fourier mass.
3. Use the LMNT bound on the high-dimensional Fourier mass of fx to conclude that M must be exponential

in n.

Step 1: Because IP is a right one-to-one function – i.e. fixing y to any two distinct values will induce
two distinct functions of x – the preprocessing function B :{0,1}n→{0,1}n must be injective, hence bijective. For
each x∈{0,1}n, let gx(y)= IP(x,B−1(y)). We have that

gx(y)= IP(x,B−1(y))=C(A(x),B(B−1(y)))=C(A(x),y)=Cx(y),

so gx agrees with Cx.

For any vector x, let Sx = {i | xi = 1}. Then, gx is just the character χB(Sx), so the gx’s are orthogo-
nal.

Step 2: Let V be the inner product space of functions {0,1}n→R. The functions gx form an orthonormal
basis for V . Let U be the subspace of functions of degree at most n

4 ; then, U is spanned by the characters χS for

5

|S|≤ n
4 , and has dimension D=

(
n

≤n/4

)
≤2H(1/4)n≤20.9n (where H is the binary entropy function). Let u1,...,uD

be an orthonormal basis for U . Then, for any function f∈V , we have

||f≤n/4||2= ||projU(f)||2=
D∑

k=1

⟨f,uk⟩2.

Because the uk’s are orthonormal, we have ||uk||2=
∑

x∈{0,1}n⟨gx,uk⟩2=1 for each k. Therefore,

Ex[||g≤n/4
x ||2]= 1

2n

∑
x∈{0,1}n

D∑
k=1

⟨gx,uk⟩2=
1

2n

D∑
k=1

∑
x∈{0,1}n

⟨gx,uk⟩2=
1

2n

D∑
k=1

1=
D

2n
.

So there is some x such that ||g≤n/4
x ||2≤ D

2n ≤2−0.1n≤ 1
2 .

Step 3: For this x, because gx agrees with Cx, it is computable by the unbounded fan-in circuit of depth at
most h and size at most M obtained by plugging A(x) into C. Thus, LMNT tells us that

2·2−t/Oh(logM)h−1

≥||g≥n/4
x ||2=1−||g<n/4

x ||2≥1− 1

2
=
1

2
.

Rearranging, we get

M≥2Ωh(n1/(h−1))

as desired.

4 A more general version of the theorem

The previous proof relied on the fact that the functions fx(y)= IP(x,y) are orthogonal. However, we may relax this
condition slightly by requiring only that a large subset of the gx’s are nearly orthogonal. This relaxation yields
the following main theorem, which is a generalization of Theorem 3.

Theorem 4. Let f :{−1,1}n×{−1,1}n→{−1,1} be a Boolean function, let 0≤k≤n/2−1, and let 0≤t≤n+k
be an integer. Suppose that the following hold:
• f is a right one-to-one function.
• There is a large subset of fx’s which is almost orthogonal. Specifically, there exists a subset X⊂{−1,1}n of
size |X|≥13·22(k+1)·

(
n+k
≤t

)
such that

Ex̸=x′∼X

[
⟨fx,fx′⟩2

]
≤ 22k

36|X|2
.

• There exists a depth-h size-M circuit C, and arbitrary functions A,B such that B :{−1,1}n→{−1,1}n+k and
C(A(x),B(y))=f(x,y).

Then M has exponential size; in particular,

M≥2
Ωh

(
[tk]

1/(h−1)
)
.

Proof. Again, for a fixed x∈{−1,1}n, define the function Cx :{−1,1}n+k→{−1,1} by Cx(y)=C(A(x),y). The
proof of this theorem follows much the same outline as the proof of Theorem 3. However, at each step, we will
have to do slightly more work to accommodate the fact that our functions are almost orthogonal rather than
perfectly orthogonal. The three steps will be:

1. Find a collection of almost orthogonal functions gx :{0,1}n+k→{0,1} such that gx(y) almost agrees with Cx.
2. Find a specific function gx with small low-degree Fourier mass.
3. Use the LMNT bound on the high-dimensional Fourier mass of gx to conclude that M must be exponential

in n.

6

Step 1: Because f is a right one-to-one function, the preprocessing function B :{−1,1}n→{−1,1}n+k must
be injective. In the proof of Theorem 3, it was critical that the preprocessing function B was a bijection. To
adapt the proof to this setting, we will extend B to a bijection β : {−1,1}n+k →{−1,1}n+k. To do this, let
Y ={y∈{−1,1}n+k |yn+1= ···=yn+k=1}; then, the complement Y is the set of all y∈{−1,1}n so that at least
one of yn+1,...,yn+k=−1. We define β by

β(y)=

{
B(y1,...,n) y∈Y,

arbitary choice y∈Y
.

We likewise extend each fx to a (collection of) functions {−1,1}n+k →{−1,1}. For any x ∈ {−1,1}n and
R⊂{n+1,...,n+k}, define

fR
x (y)=

{
fx(y1,...,n) y∈Y,

χS(x)(y1,...,n)·χR(yn+1,...,n+k) y∈Y
.

We claim that, for every x, there is some R such that fR
x almost agrees with Cx◦β:

Claim 1. For every x∈{−1,1}n, there exists R(x)⊂{n+1,...,n+k} such that f
R(x)
x agrees with Cx◦β on at least

1
2+

1
2k+1 fraction of inputs.

Proof. Fix y∈{−1,1}n+k. We’ll consider two cases, based whether or not y∈Y .
Case 1. If y∈Y , then by definition,

fR
x (y)=fx(y1,...,n)=C(A(x),B(y1,...,n))=C(A(x),β(y))=Cx◦β(y).

Hence, each fR
x automatically agrees with Cx◦β on 2n inputs.

Case 2. Otherwise, if y∈Y , then there’s some i∈{n+1,...,n+k} such that y=−1. For any R containing
i, we have

χR(yn+1,...,n+k)=−χR\{i}(yn+1,...,n+k),

so fR
x (y)=−f

R\{i}
x (y), and thus exactly one of fR

x ,f
R\{i}
x agrees with Cx◦β on y. Therefore, for a fixed

y, we have that fR
x (y)=Cx◦β(y) for exactly half of all subsets R⊂{n+1,...,n+k}. Hence,

ER⊂{n+1,...,n+k}

[
Pr
y∈Y

fR
x (y)=Cx◦β(y)

]
=Ey∈Y

[
Pr

R⊂{n+1,...,n+k}
fR
x (y)=Cx◦β(y)

]
=Ey∈Y

[
1

2

]
=
1

2
.

So there is some R(x) for which f
R(x)
x agrees with Cx◦β on at least half of all inputs y∈Y – since there

are 2n+k−2n such y’s, this f
R(x)
x agrees with Cx◦β on at least 2n+k−1−2n−1 inputs.

The total fraction of inputs that f
R(x)
x agrees with Cx◦β on is thus at least

2n+2n+k−1−2n−1

2n+k
=
1

2
+

1

2k+1

as desired.

Having found a collection of functions f
R(x)
x that almost agree with Cx◦β, we will now check that they are

almost orthogonal. To do this, we’ll bound ⟨fR(x)
x ,f

R(x′)
x′ ⟩=Ey∈{−1,1}n+k

[
f
R(x)
x (y)f

R(x)
x′ (y)

]
for all x ≠ x′ ∈X.

Again, we’ll look at two cases based on whether or not y∈Y .

Case 1. If y∈Y , then f
R(x)
x (y)f

R(x′)
x′ (y) is just fx(y1,...,n)fx′(y1,...,n).

Case 2. Otherwise, f
R(x)
x (y)f

R(x′)
x′ (y) is

χS(x)(y1,...,n)χS(x′)(y1,...,n)·χR(x)(yn+1,...,n+k)χR(x′)(yn+1,...,n+k).

Because the coordinates y1,...,yn and yn+1,...,yn+k are disjoint, the expectation of this over all y∈Y is

Ey∈Y
[
χS(x)(y1,...,n)χS(x′)(y1,...,n)

]
·Ey∈Y

[
χR(x)(yn+1,...,n+k)χR(x′)(yn+1,...,n+k)

]
.

But the left factor is just ⟨χS(x),χS(x′)⟩=0.

7

Therefore,

⟨fR(x)
x ,f

R(x′)
x′ ⟩= 1

2k
·Ey∈Y

[
fR(x)
x (y)f

R(x′)
x′ (y)

]
+

(
1− 1

2k

)
Ey∈Y

[
fR(x)
x (y)f

R(x′)
x′

]
=

1

2k
·Ey∈Y [fx(y1,...,n)fx′(y1,...,n)]+

(
1− 1

2k

)
·0

=2−k⟨fx,f ′
x⟩.

By assumption, Ex̸=x′∼X

[
⟨fx,fx′⟩2

]
≤ 22k

36|X|2 , so

Ex̸=x′∼X

[
⟨fR(x)

x ,f
R(x′)
x′ ⟩2

]
=2−2kEx̸=x′∼X

[
⟨fx,f ′

x⟩2
]
≤ 1

36|X|2
.

So the f
R(x)
x ’s are functions which almost agree with Cx ◦ β and are close to being orthogonal. The func-

tions gx = f
R(x)
x ◦ β−1, then, are functions which almost agree with Cx and are also close to being orthogo-

nal.

Step 2: The next step is to find a function gx which has small low-degree Fourier mass. As in step 2 of
the proof of Theorem 3, we will do this by finding a function whose projection onto a subspace of small-degree
functions is small.

Let V be the inner product space of functions {0,1}n+k→R, and let U be the subspace of functions of degree
at most t; then, U is spanned by the characters χS for |S|≤ t, and has dimension D=

(
n
≤t

)
. We already have a

set X such that the expectation of ⟨gx,gx′⟩ over all x,x′ is small; the first step is to find a subset Z⊂X such that,
for each individual x∈Z, the expectation of ⟨gx,gx′⟩ over all x′ is small. To do this, note that by Cauchy-Schwarz,

Ex̸=x′∼X[|⟨gx,gx′⟩|]≤Ex̸=x′∼X

[
⟨gx,gx′⟩2

]1/2≤ 1

6|X|
.

Let Z be the set of all x∈X such that Ex′∼X\{x}

[
⟨fR(x)

x ,f
R(x′)
x′ ⟩2

]
< 1

12|X|2 and Ex′∼X\{x}[|⟨gx,gx′⟩|]< 1
2|X| . By

Markov’s inequality,

Pr
x∼X

[
Ex′∼X\{x}

[
⟨gx,gx′⟩2

]
≥ 1

12|X|2

]
≤12|X|2·Ei̸=j∼X

[
⟨gx,gx′⟩2

]
≤ 1

3
,

and similarly,

Pr
x∼X

[
Ex′∼X\{x}[|⟨gx,gx′⟩|]≥ 1

2|X|

]
≤2|X|·Ei̸=j∼X[|⟨gx,gx′⟩|]≤ 1

3
.

Therefore, Z contains at least one third of the elements in X. Let W be the subspace of V spanned by gx
for all x∈Z.

Let u1,...,uD be an orthonormal basis for U , and for each k∈ [D], let wk be the projection of uk onto W . Since
||uk||=1 for each k, we’ll have ||wk||≤1. Since wk lies in W , we can write

wk=
∑
x∈Z

cxgx

8

for some coefficients cx∈R. We can then compute

1≥||wk||2

=⟨w,w⟩

=

〈∑
x∈Z

cxgx,
∑
x′∈Z

cx′gx′

〉
=

∑
x,x′∈Z

cxcx′⟨gx,gx′⟩

=
∑
x∈Z

c2x+
∑

x̸=x′∈Z

cxcx′⟨gx,gx′⟩

For any x,x′, we have

cxcx′⟨gx,gx′⟩≥ 1

2
(c2x+c2x′)⟨gx,gx′⟩≥−1

2
(c2x+c2x′)⟨gx,gx′⟩,

so we get

1≥
∑
x∈Z

c2x−
1

2

∑
x̸=x′∈Z

(c2x+c2x′)|⟨gx,gx′⟩|

=
∑
x∈Z

c2x·

1−
∑

x′∈Z\{x}

|⟨gx,gx′⟩|

=
∑
x∈Z

c2x·
(
1−(|X|−1)Ex′∈Z\{x}|⟨gx,gx′⟩|

)
≥
∑
x∈Z

c2x·
(
1−(|X|−1)

1

2|X|

)
≥ 1

2

∑
x∈Z

c2x,

and thus
∑

x∈Zc
2
x≤2. We now do a similar calculation for ⟨gx,gx′⟩2. Because (a+b)2≤2a2+2b2 for any a,b,

we can compute

⟨wk,gx⟩2=

〈∑
x∈Z

cxgx,gx

〉2

=

cx+
∑

x′∈Z\{x}

cx⟨gx,gx′⟩

2

≤2c2x+2

 ∑
x′∈Z\{x}

cx⟨gx,gx′⟩

2

.

By Cauchy-Schwarz, this is bounded by

⟨wk,gx⟩2≤2c2x+2
∑

x′∈Z\{x}

c2x′ ·
∑

x′∈Z\{x}

⟨gx,gx′⟩2

≤2c2x+2·2·(|X|−1)·Ex′∈Z\{x}⟨gx,gx′⟩2

≤2c2x+2·2·(|X|−1)· 1

12|X|2

≤2c2x+
1

3|X|
.

9

Taking expectation over Z, we get

Ex∈Z⟨wk,gx⟩2≤Ex∈Z

[
2c2x+

1

3|X|

]
=

2

|Z|
∑
x∈Z

c2x+
1

3|X|
≤ 4

|Z|
+

1

3|X|
.

Because |Z|≥|X|/3, this is at least 12
|X|+

1
3|X|≤

13
|X| . This holds for all k∈D, so we get

Ex∈Z
[
||projU(gx)||2

]
=Ex∈Z

[∑
k∈D

⟨gx,uk⟩2
]

=Ex∈Z

[∑
k∈D

⟨gx,wk⟩2
]

=
∑
k∈D

[
Ex∈Z⟨gx,wk⟩2

]
≤D· 13

|X|
.

So there is some x∈Z such that

||g≤t
x ||2= ||projU(gx)||2≤

13D

|X|
≤

13
(
n+t
≤t

)
13·22(k+1)·

(
n+k
≤t

)=2−2(k+1),

and thus ||g≤t
x ||≤2−k−1. This is the function with small low-degree Fourier mass that we’re looking for.

Step 3: All that remains is to bound the high-degree Fourier mass of this gx. We know that gx agrees with
the function Cx on at least 1

2+2−k−1 fraction of inputs. Thus,

⟨gx,Cx⟩=2Pr[gx=Cx]−1≥2·
(
1

2
+2−k−1

)
−1=2−k.

But also, by Cauchy-Schwarz,

⟨gx,Cx⟩=⟨g≤t
x ,C≤t

x ⟩+⟨g>t
x ,C>t

x ⟩≤||g≤t
x ||+||C>t

x ||.

Because Cx is a circuit of depth h and size M , by LMNT,

||C>t
x ||2≤2·2−t/Oh(logM)h−1

.

Therefore,

2−k≤||g≤t
x ||+||C>t

x ||≤2−k−1+2·2−t/Oh(logM)h−1

.

Solving for M , we get

M≥2
Ωh

(
[t
2k+3]

1/(h−1)
)
,

as desired.

5 Applying the main theorem

In the remainder of the paper, we illustrate the utility of Theorem 4 by presenting a few examples of functions
f which satisfy its hypotheses. In order to apply Theorem 4 to a Boolean function f , f must satisfy the technical
conditions in the hypothesis:

• f is right one-to-one function.

10

• (Almost-orthogonality) There exist integers 0≤k≤n/2−1, 0≤ t≤n+k, and a subset X⊂{−1,1}n of size
|X|≥13·22(k+1)·

(
n+k
≤t

)
such that

Ex̸=x′∼X

[
⟨fx,fx′⟩2

]
≤ 22k

36|X|2
.

Typically, checking the right one-to-one condition is easy (it’s in some sense almost without loss of generality,
since if f behaves identically on two different y’s you might as well be encoding your y’s less wastefully). The
almost-orthogonality condition is much more stringent. In order to apply Theorem 4, we first translate the
technical formulation of this condition into “plain mathematics” by presenting a simplified statement of the
condition:

• (Simplified almost-orthogonality) There exists a subset X̃⊂{−1,1}n with |X̃|=2Ω(n) and Ex̸=x′∼X⟨fx,fx′⟩2=
2−Ω(n).

It is not hard to see that simplified almost-orthogonality implies almost-orthogonality.

Proposition 1. Let f : {−1,1}n×{−1,1}n →{−1,1} be a Boolean function satisfying the simplified almost-
orthogonality condition. Then, for any 0 ≤ α < 1, there is some constant a such that f satisfies the almost-
orthogonality condition for any 0≤k<nα, t=a(n+k).

Proof. Suppose that there are constants c1,c2 such that, for sufficiently large n, there exists a subset X̃⊂{−1,1}n
with |X̃|≥2c1n and Ex̸=x′∼X̃⟨fx,fx′⟩2≤2−c2n. Let s be an integer. By averaging, there is a set Xs⊂X̃ with size

s such that Ex̸=x′∼Xs⟨fx,fx′⟩2≤2−c2n. So it suffices to choose s≤|X̃| to satisfy

13·22(k+1)·
(

n+k

≤a(n+k)

)
≤13·22(k+1)·2H(a)(n+k)≤s≤ 2k

6·2−c2n/2
≤ 2k

6·
(
Ex̸=x′∼X̃s

⟨fx,fx′⟩2
)1/2

;

then, Xs will be the desired set. In order for such an s to exist, the left hand side must be strictly smaller than
both the right hand side and |X̃|. By choosing a small enough that H(a)<c1 and H(a)<c2/2, we get

13·22(k+1)·2H(a)(n+k)≤2H(a)n+o(n)≤2c1n,2c2/2n≤|X̃|, 2k

6·2−c2n/2
,

so both conditions are met and we can choose a satisfactory s.

Using this formulation of the almost-orthogonality condition, we obtain the following reformulation of Theorem 4.

Theorem 5. Let f :{−1,1}n×{−1,1}n→{−1,1} be a Boolean function. Let 0≤α<1, let 0≤k≤nα. Suppose
that the following hold:
• f is a right one-to-one function.
• There exists a subset X̃⊂{−1,1}n with |X̃|=2Ω(n) and Ex̸=x′∼X⟨fx,fx′⟩2=2−Ω(n).
• There exists a depth-h size-M circuit C, and arbitrary functions A,B such that B :{−1,1}n→{−1,1}n+k and
C(A(x),B(y))=f(x,y).

Then M has exponential size; in particular,

M≥2Ωh(n(1−α)/(h−1)).

We will now see a few examples of functions which satisfy the simplified almost-orthogonality condition, and
to which Theorem 5 applies. The most obvious example is the inner product function itself: it satisfies simplified
almost-orthogonality by taking X̃={−1,1}n. So, applied to IP, Theorem 5 gives a strengthening of Theorem 3,
where the preprocessing function B is allowed to extend the input length by nα bits rather than keeping it constant.

The other two examples – weak PRFs and rounded inner product functions – will require more work.

11

5.1 Applying the main theorem to weak PRFs

Our goal in this section will be to show that exponentially secure PRFs satisfy the near-orthogonality condition
of the main theorem. This will imply that subexponential-size AC0 circuits can’t compute them with preprocessing
that only extends one input, giving modest evidence against encoded-input PRFs in AC0. First, a reminder of
the definition of a weak PRF:

Definition 1. A function F : {0,1}n ×{0,1}n → {0,1} is a weak PRF with security s if, for any size-s cir-
cuit C, the probability over random key k, random inputs x1,x2,..., and the internal randomness of C, that
C(x1,F(x1),x2,F(x2),...) accepts differs by at most 1

s from the probability that C(U) accepts, where U is a uniform
random bitstring.

Theorem 6. For any constants c > 1, α ∈ (0,1), and any right one-to-one weak PRF3 F with security 2n/c,
if A : {0,1}n → {0,1}n+nα

, B : {0,1}n → {0,1}poly(n), C : {0,1}n+nα × {0,1}poly(n) → {0,1} are such that
C(A(k),B(x))=Fk(x) on all inputs, then C cannot be computed by subexponential-size AC0 circuits.

Proof. Let’s move to the {−1,1} domain for the purposes of this argument. If we could show that

Ek̸=k′[⟨Fk,Fk′⟩2]≤2−Ω(n),

then F would satisfy simplified almost-orthogonality with X={−1,1}n, and by Theorem 5 we’d be done. So, let’s
assume that

Ek,k′[⟨Fk,Fk′⟩2]>2−n/100c,

and derive a contradiction.

If we took a truly random function U , we know

EU,k′[⟨U,Fk′⟩2]=2−n.

This suggests a approach for distinguishing Fk from a truly random function: estimate the inner product of
the function with Fk′ for a random k′, and check whether the inner product magnitude looks suspiciously high.
Suppose, for now, that we’re able to compute the inner product of two functions with a small circuit. By Hoeffding,
we can certainly say

Pr
U,k′

[⟨U,F ′
k⟩2>2−n/50c]≤2−n/50c.

So, by assumption that F is a weak PRF of security s, we must have Prk,k′[⟨Fk,Fk′⟩2>2−n/50c]≤2−n/50c+1/s≤
2−n/60, because otherwise we could get more than 1/s advantage in distinguishing between the PRF and a true
random function by choosing a random k′ ourself and accepting if the inner product between the mystery function
and Fk′ is larger than

√
2−n/60c in magnitude. But now, this means that

Ek,k′[⟨Fk,Fk′⟩2]≤1·Pr
k,k′

[⟨Fk,Fk′⟩2>2−n/50c]+2−n/50c·Pr
k,k′

[⟨Fk,Fk′⟩2≤2−n/50c]

≤2−n/60c+2−n/50c≤2−n/70c,

contradicting our assumption that Ek,k′[⟨Fk,Fk′⟩2]>2−n/100c. Of course, we haven’t quite won yet, because
we don’t actually have a small circuit to exactly compute the inner product of the mystery function and our
randomly chosen Fk′. But, note that the above analysis still holds even if we only have a circuit that computes
something within 2−n/10c of the inner product of two functions, with failure probability less than 2−n/10c. And
this we can certainly do: given oracle access to two functions f and g, our circuit will choose N=2−n/5c random
inputs x1,...,xn∈{−1,1}n, and compute the approximate inner product by taking

1

N

∑
i∈[N]

f(xi)g(xi).

Again by Hoeffding, this gives with high probability a good approximation to the inner product. Noting that this
procedure can be implemented by a circuit much smaller than s, we have shown the desired contradiction.

3The right one-to-one condition can be removed if F is a strong PRF. Also, the theorem can be shown for PRFs of somewhat
worse security, with correspondingly weaker impossibility guarantees for AC0 circuits – we are just presenting this instantiation of
the theorem for concreteness.

12

5.2 Applying the main theorem to rounded inner products

A more concrete example of a class of functions which satisfy the hypotheses of Theorem 4 consists of the “rounded
inner product functions”.

Definition 2. For an integer q ≥ 2 and set R ⊂ {0,1, ... ,q − 1}, the (q,R)-rounded inner product function

IP[q,R] :{0,1}n×{0,1}n→{0,1} is given by

IP[q,R](x,y)=

{
0

∑n
i=1xiyi (mod q)∈R

1 otherwise
.

So the function IP[2,{0}], for example, is the normal inner product mod 2.
Of note is that some specific rounded inner product functions, like IP[6,{0,1,2}] (presented as (*) in Section 1.2),

are conjectured to be weak PRFs [Bon+18]. If this conjecture is true, then these functions would be covered by
the result of Theorem 6. However, some rounded inner product functions, like the plain mod 2 inner product,
are provably not weak PRFs. It turns out that all rounded inner products, regardless of weak PRF status,
satisfy the hypotheses of Theorem 4. Thus, we obtain that rounded inner products, too, cannot be computed by
subexponential-size AC0 circuits with preprocessing that only extends one input.

Theorem 7. Let q≥2 be even, let 0≤α<1 be a constant, let R⊂{0,1,...,q−1} be a subset of size q
2 , and let

f(x,y)= IP[q,R](x,y). If k≤nα and there exists a depth-h size-M circuit C and arbitrary functions A, B with
B :{−1,1}n→{−1,1}n+k, then C cannot be computed by subexponential-size AC0 circuits.

Proof. By Theorem 5, it suffices to find a subset X ⊂{0,1}n with |X|≥ 2Ω(n) and Ex̸=x′∼X⟨fx,fx′⟩2=2−Ω(n).
We will take X to be a set with large minimum Hamming distance. The main step of the proof is to argue that
if x,x′∈{0,1}n have large Hamming distance, then the inner product ⟨fx,fx′⟩ is small. To compute this inner
product, we will estimate the probability Pry[fx(y)=fx′(y)]. Estimating this probability requires knowing how
likely a specific function fx is to take on certain values, which is accomplished by the lemma below:

Lemma 3. Let q≥2 be an integer. There exists a constant 0<cq<1 such that, for any r∈{0,1,...,q−1} and
large enough n,

Pr
y∼{0,1}n

[∑
i

yi=r

]
=
1

q
±O(cnq).

Sketch of proof. This follows from convergence properties of Markov chains.

Suppose that x,x′ have Hamming distance at least n/3. Let Sx,Sx′ be the subsets of [n] characterized by x and x′.
Since d(x,x′)= |Sx\Sx′|+|Sx′\Sx|, at least one of these subsets must have size at least n/6. Without loss of generality,
suppose |Sx\Sx′|≥n/6, and let J=Sx\Sx′ ={i |xi=1,x′i=0}. We can write the relevant inner products as

n∑
i=1

xiyi=
∑
i∈J

xiyi+
∑
i∈J

xiyi=
∑
i∈J

1·yi+
∑
i∈J

xiyi,

and

n∑
i=1

x′iyi=
∑
i∈J

x′iyi+
∑
i∈J

x′iyi=
∑
i∈J

0·yi+
∑
i∈J

x′iyi=
∑
i∈J

x′iyi.

For any fixed v∈{0,1}J , the restriction

(fx′)J→v(y)=

{
0

∑
i∈Jx

′
ivi∈R

1 otherwise

13

is constant. Hence, since |R|=q/2, there are q/2 possible values that
∑

i∈Jyi can take on that will make (fx)J→v(y)
agree with (fx′)J→v(y). By Lemma 3, this will occur with probability

q

2
·
(
1

q
±O(c|J|)

)
=
1

2
±O(cn/6).

Therefore, the probability that fx=fx′ is

Pr
y
[fx(y)=fx′(y)]=Ev

[
Pr
y
[(fx)J→v(y)=(fx′)J→v(y)]

]
=Ev

[
1

2
±O(cn/6)

]
=
1

2
±O(cn/6),

and so the inner product can be computed as

⟨fx,fx′⟩=2Pr
y
[fx(y)=fx′(y)]−1=±O(cn/6).

There is thus a constant K such that
⟨fx,fx′⟩2≤Kcn/3=2−Ω(n)

for all x,x′ with Hamming distance at least n/3.
It follows that any set X⊂{0,1}n with minimum Hamming distance at least n

3 will have the fx’s close to

orthogonal. By the Gilbert-Varshanov bound, such a set X̃ exists with size at least |X̃|≥2n(1−H(1/3))=2Ω(n),
so the almost-orthogonality condition is satisfied.

6 A relationship between proving IPPP and learning AC0

As a final note, we will briefly mention an observation about attempts to prove the IPPP conjecture conditional on
cryptographic assumptions. Recall the weak PRF candidate of rounded mod 6 inner product, presented as (*) in Sec-
tion 1.2. Given that the potentially cryptographically-hard function is essentially just an inner product, wemight hope
that assuming this PRF is secure could be useful in establishing the IPPP conjecture conditionally. Filmus, Ishai, Ka-
plan, and Kindler were unable to establish such a result, but they did establish an interesting sort of win-win theorem.

Theorem 8. Suppose rounded mod 6 inner product is an exponentially-secure weak PRF. Then, either
1. inner product mod 2 can’t be computed by poly-size AC0 circuits with poly-time preprocessing,
2. inner product mod 3 can’t be computed by poly-size AC0 circuits with poly-time preprocessing, or
3. there exist poly-time samplable distributions on which no subexponential-time algorithm can learn AC0.

Proof. Suppose that all 3 of these consequent statements fail – we will use this to show a weak PRF distinguisher for
rounded mod 6 inner product. First, note that if statements 1 and 2 both fail, this implies an AC0 circuit for rounded
mod 6 inner product with poly-time preprocessing. Simply build a circuit for inner product mod 2, a circuit for inner
product mod 3, and then feed those outputs into a constant-size circuit to output rounded inner product mod 6.

For any value of key k, hardwiring the first input of the circuit described above gives an AC0 circuit for
computing B(x) 7→Round(⟨k,x⟩ mod6), where B is our poly-time preprocessing of x. So, observing outputs of
the rounded mod 6 PRF on random inputs is the same as observing outputs of that AC0 circuit on inputs sampled
from B(Un). By the failure of our 3rd assumption, we can learn the AC0 circuit in subexponential time over
this distribution, which would be impossible if we were seeing outputs of a true random function – so we have
a subexponential-time distinguisher for the supposed PRF.

This might seem like a silly statement, because all 3 of the consequent statements seem very plausible,
and the cryptographic hypothesis seems very strong. But even though this may well be saying “False =⇒
True ∨ True ∨ True”, despite some effort none of the involved statements have been succesfully shown on their
own, so it’s of note that we at least know this implication.

14

References

[BFS86] Laszlo Babai, Peter Frankl, and Janos Simon. “Complexity classes in communication complexity theory”.
In: 27th Annual Symposium on Foundations of Computer Science (sfcs 1986). 1986, pp. 337–347. doi:
10.1109/SFCS.1986.15.

[Bon+18] Dan Boneh et al. Exploring Crypto Dark Matter: New Simple PRF Candidates and Their Applications.
Cryptology ePrint Archive, Paper 2018/1218. https://eprint.iacr.org/2018/1218. 2018. url:
https://eprint.iacr.org/2018/1218.

[Fil+20] Yuval Filmus et al. “Limits of preprocessing”. In: 35th Computational Complexity Conference (CCC
2020). Schloss-Dagstuhl-Leibniz Zentrum für Informatik. 2020.

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. “Constant depth circuits, Fourier transform, and
learnability”. In: J. ACM 40.3 (July 1993), pp. 607–620. issn: 0004-5411. doi: 10.1145/174130.174138.
url: https://doi.org/10.1145/174130.174138.

[Tal17] Avishay Tal. “Tight Bounds on the Fourier Spectrum of AC0”. In: 32nd Computational Complexity
Conference (CCC 2017). Ed. by Ryan O’Donnell. Vol. 79. Leibniz International Proceedings in
Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017,
15:1–15:31. isbn: 978-3-95977-040-8. doi: 10.4230/LIPIcs.CCC.2017.15. url: https://drops.
dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2017.15.

15

https://doi.org/10.1109/SFCS.1986.15
https://eprint.iacr.org/2018/1218
https://eprint.iacr.org/2018/1218
https://doi.org/10.1145/174130.174138
https://doi.org/10.1145/174130.174138
https://doi.org/10.4230/LIPIcs.CCC.2017.15
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2017.15
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2017.15

	Introduction
	Communication Complexity
	Cryptography
	Overview of Results

	Functions in AC0 are close to low degree
	A proof of IPPP when only one input length is extended
	A more general version of the theorem
	Applying the main theorem
	Applying the main theorem to weak PRFs
	Applying the main theorem to rounded inner products

	A relationship between proving IPPP and learning AC0

