
Exploring quantum analogs of the k-Canadian Traveler Problem

Nathan Sheffield

Massachusetts Institute of Technology

(Dated: September 23, 2023)

Abstract

The Canadian Traveler Problem concerns online s-t pathfinding in a subgraph of a known graph.

It has been studied especially in the case where it is guaranteed that at most k edges of the known

graph are missing in the true graph, which is referred to as the ”k-Canadian Traveler Problem”

or k-CTP. In this paper, we consider a relaxation of the problem in which edges can be queried

arbitrarily. We show a lower bound of Ω(k ·d) queries in the classical setting, where d is the length

of the shortest s-t path. We then give a straightforward quantum algorithm achieving Õ(k ·
√
d)

query complexity. Analyzing the s-t connectivity span program algorithm of Belovs and Reichardt

with the promise of at most k missing edges, we argue why one might expect a worst-case Õ(
√
k · d)

query complexity to be achievable. We prove this complexity in the special case where all paths

in the graph are node-disjoint, show a corresponding lower bound, and then discuss potential

approaches to work towards an algorithm on general graphs.

1

I. INTRODUCTION

The Canadian Traveller problem was first introduced by Papadimitriou and Yan-

nakakis in 1991, who chose the name after hearing about truck drivers in remote parts of

Canada who had to carefully plan routes because of the possibility of snow making roads

impassable. The traditional formulation of the problem can be seen in FIG 1: a traveler is

placed at a vertex s of a graph G′, and aims to travel to a vertex t in as few steps as possible.

The traveler has access to a map G, however G′ is a subgraph of G that may be missing

edges; the traveler discovers upon arriving at a vertex whether any of the edges leaving it

are blocked.

FIG. 1. A CTP instance; the traveler has access to the graph G, but may end up having to

backtrack after discovering missing edges in G′.

The competitiveness of an algorithm for CTP is measured in terms of the true shortest

s-t path in G′; the goal is to find an algorithm that minimizes the ratio of travel distance for

the Canadian traveler to that an omniscient traveler with access to G′. Most work focuses

on finding competitive strategies for k-CTP, where there are at most k = O(1) blocked edges

and k is known to the algorithm. This framework was first dealt with by Westphal, who

gave a simple deterministic algorithm achieving competitive ratio 2k + 1, as well as lower

bounds of 2k+1 and k+1 in the deterministic and randomized settings, respectively [1]. A

subsequent paper by Xu et al showed a greedy strategy that improves on the 2k + 1 bound

in grid-like graphs [2]. Work by Bender and Westphal showed a tight k + 1 upper bound

on randomized complexity in the case where all s-t paths are vertex-disjoint [3], and a 2014

result of Demaine et al showed a randomized strategy achieving
(
1 + 1√

2

)
k+1 competitive

ratio on general graphs [4]. It remains open whether k + 1 is achievable in general.

2

II. STOCHASTIC S-T PATHFINDING MODEL

In order to consider k-CTP in a quantum setting, we’ll define a straightforward related

problem, which we refer to as the stochastic s-t pathfinding model:

Definition 1 (Stochastic s-t pathfinding). The traveler is given a graph G, a start node s,

a destination node t, and a promise that the true graph G′ is equal to G but with up to k

missing edges. The traveler has access to an oracle U , where

U(|i⟩ |b⟩) =

|i⟩
∣∣b〉 if the edge with index i in G′ is unblocked

|i⟩ |b⟩ otherwise

In terms of k (the promised number of missing edges), and d (the length of the true

shortest s-t path in G′), what is the minimum number of oracle queries required for the

traveler to be able to identify an unblocked s-t path in the graph with success probability

at least 2
3
?

This problem captures a fair amount of the standard k-CTP problem: we’re asking for

the difficulty of finding an s-t path with limited information, with the goal of doing well

when the true shortest path was short. However, our definition notably differs from the

standard k-CTP in that it allows for edges to be queried from arbitrary parts of the graph,

instead of enforcing that the traveler must perform a walk and query only adjacent edges

[5]. We’ll now proceed to show that the classical lower bounds for k-CTP also hold in this

model.

A. Classical Lower Bounds

To lower-bound the number of queries required by a classical algorithm, we’ll consider

a graph with node-disjoint paths, as in the lower bound from [1]. Consider a graph in

which s and t are connected by k+1 disjoint paths, each of length d, shown in FIG 2. Now,

suppose a deterministic classical algorithm has queried k · d − 1 = Ω(k · d) edges. It can

be seen that an adaptive adversary can ensure that there remain two paths, each of which

might be either blocked or unblocked, so that the deterministic algorithm cannot guarantee

a solution.

3

FIG. 2. A graph on which classical algorithms require Ω(k · d) queries

The lower bound for randomized classical complexity is similar. We appeal to Yao’s

principle, arguing that a worst-case bound on a randomized algorithm can be obtained from

an average-case bound on deterministic algorithms [6]. Consider the case where G is as in

FIG 2. We choose the distribution of G′ to be uniform across all subgraphs of G where k of

the k + 1 paths have exactly 1 missing edge. Suppose a deterministic algorithm has made

kḋ
100

= Ω(k · d) edge queries. The probability that a given query discovers a blocked edge is

upper bounded by 2
d
if the query is to a path that has received at most d

2
previous queries.

Even if it were the case that the
(
d
2
+ 1
)
st query to a path always revealed a blocked edge,

this would give us an upper bound of 2k
50

on the expected number of edges revealed. By

Markov’s inequality, this means the probability that the algorithm has already discovered

more than k
5
blocked edges is at most 1

5
. Now, assuming at most k

5
blocked edges have been

discovered, consider the probability that the algorithm has revealed more than half the edges

in the true unblocked path. All 4k
5

as-yet-unblocked paths are a priori equally likely to be

the true unblocked path, so the choice of which ones to start making more than d
2
queries is

necessarily arbitrary, and thus with probability 39
40

the algorithm has revealed no more than

half the edges in the true unblocked path. But now, in this case, even if the algorithm knew

the true unblocked path was one of the ones it had made at most d
2
queries to, it would have

at least k
2
options to choose from, each of whose probability of being the true unblocked path

differs by at most a factor of two. So, it will guess correctly with probability at most 4
k
. But

1
5
+ 1

40
+ 4

k
< 2

3
in the limit of large k, which shows a lower bound of Ω(k · d) randomized

query complexity.

4

B. Quadratic improvement in d

Given access to quantum computation, however, it is possible to do better than O(k ·d) in

general. A simple application of Grover’s algorithm will in fact allow us to achieve Õ(k ·
√
d).

Specifically, we will use the fact that, given a domain of size N , there exists a quantum search

algorithm requiring O(
√

n log 1/ε) queries that finds a solution with probability at least 1−ϵ

if one exists [7]. The following algorithm solves k-CTP in the stochastic connectivity model

with Õ(k
√
d) query complexity (it is roughly analogous to the classical BACKTRACK

algorithm proposed in [1]):

Algorithm 1 Quantum ”backtrack” algorithm
1: M ← G represents the map known to the traveler

2: r ← 0 represents the number of blocked edges the traveler has revealed

3: while r < k do

4: Find the shortest path, P , in M

5: Quantum search on P long enough find a blocked edge with 1− 1
4k probability if it exists

6: if a blocked edge e has been found then

7: M ←M \ {e}

8: r ← r + 1

9: else

10: Return P

11: Return the shortest unblocked path in M

This algorithm runs for at most k iterations, and on each iteration makes an error (i.e.

returns a path with a blocked edge) with probability at most 1
4k
, so the total probability of

error is at most 1
4
. Since we always search the shortest unblocked path in the graph, we are

guaranteed to only run searches on paths of lengths less than or equal to the true shortest

path length d. So, the total number of required queries is O(k
√
d log 4k) = Õ(k

√
d).

We might wonder whether this quadratic speedup in d is in fact optimal, or whether it is

possible to improve upon this somewhat trivial algorithm. The following analysis hints that

it may be possible to achieve Õ(
√
k · d), but fails to show an algorithm doing so in general.

5

C. Alternate analysis of the span program for s-t connectivity

Our key tool will be Belovs and Reichardt’s span program for s-t connectivity. A span

program is a model of computation introduced by Karchmer and Wigderson for understand-

ing classical complexity [8]. They have since become an important tool in understanding

quantum complexity due to a result of Reichardt that span program witness sizes provide

upper bounds for quantum query complexity [9]. We state this result, and the definition of

span programs, in appendix A.

Belovs and Reichardt subsequently developed an span program for checking s-t connec-

tivity, which they analyzed to find an efficient quantum connectivity algorithm. This span

program is as follows:

• The vector space V has one basis element associated to each vertex in the graph

• The target vector is chosen to be |t⟩−|s⟩, where s and t are the source and destination

vertices, respectively

• An input x encodes for each pair of vertices (u, v) whether the edge (u, v) exists in the

graph. I
(0)
(u,v) = {}, I

(1)
(u,v) = |v⟩ − |u⟩

In their analysis, Belovs and Reichardt observe that, if the domain of x is restricted such

that s and t are connected only if they’re connected by a path of length ≤ d, the max

positive witness size is O(d) (witnessed by an unblocked s-t path; the sum along this path

is |t⟩ − |s⟩), and the max negative witness size is O(n2) (witnessed by an s-t cut; the sum

of the vectors in t’s connected component minus the sum of the vectors in s’s connected

component has dot product 1 with |t⟩ − |s⟩ but 0 with all available vectors), so a quantum

algorithm can solve this problem with O(n
√
d) queries [10].

We are interested, however, in the case where we know that G′ is equal to G with up to

k missing edges. In this case, we can analyze the span program slightly differently. Once

again, with a promise that the shortest path from s to t is of length at most d if it exists,

we get maximum positive witness size at most d. But now, if we have sets I(u,v) only for

(u, v) ∈ G, we are guaranteed to only ever have up to k unavailable vectors. So, the number

of unavailable vectors crossing an s-t cut is at most k, and each has dot product at most

2 with with the witness vector, so the maximum positive witness size is 4k. Thus, given a

6

promise that no more than k edges are missing from G, we can check s-t connectivity with

O(
√
k · d) queries.

III. QUANTUM ALGORITHM FOR NODE-DISJOINT PATH GRAPHS

This s-t connectivity result seems initially like it should directly give us the desired

complexity for our problem. However, there’s a couple of caveats. The first is that our

complexity is in terms of a promise for d. That is, if we know ahead of time that s and t

will have a path of length at most d if they’re connected, then we can check connectivity in

few queries with bounded error probability. However, if we don’t a priori know for certain

a bound on their distance, the fact that they might ”happen” to be close anyway doesn’t

help us – we needed to have known before we ran the algorithm. The second issue is that

while this algorithm can check connectivity, it won’t actually return a path when s and t

are connected. There does not seem to be an obvious way to reduce the search problem to

that decision problem.

These caveats mean that we are not able in this paper to provide an Õ(
√
k · d) algorithm

for the general case. However, we will show how to overcome these issues in the case where

all paths are node-disjoint (which was the case where we found our classical lower bounds),

which gives some hope for a general algorithm. Both of the methods we use will be variants

of binary search, meaning that our final algorithm will be performing two nested binary

searches.

A. Checking connectivity without a promise of d

Lemma 1 (Better s-t connectivity complexity on node-disjoint paths). Suppose we’re given

a graph G where all simple s-t paths have disjoint vertices from each other, and a promise

that G′ consists of G with at most k blocked paths [11]. There exists a quantum algorithm

that tests s-t connectivity in G′ using O(
√
k · d∗ log d∗) queries to the adjacency matrix G′,

where d∗ is the length of the true shortest s-t path in G′, or the maximum length s-t path

in G if no connection exists in G′.

Proof. Consider a binary search as in Algorithm 2.

Since the connectivity span program has bounded two-sided error, given an appropriate

7

Algorithm 2 Connectivity algorithm for node-disjoint path graphs
1: d← 1

2: while d is less the twice the longest path length in G do

3: Gd ← the subgraph of of G consisting of all s-t paths with length at most d

4: for C · log d iterations do

5: Run the connectivity span program on Gd, with promises of ≤ k missing edges and

shortest path length ≤ d if a path exists

6: if the majority of iterations say Gd is connected then

7: Return TRUE

8: else

9: d← 2 · d

10: Return FALSE

choice of constant C we can ensure that each execution of the while loop has probability at

most 1
3
· 2−d of giving an erroneous result. So, the total error probability is bounded by 1

3
.

By our analysis of the span program algorithm, each execution of the while loop requires

O(
√
k · d log d) oracle queries. If s and t are connected by a path of length d∗, the total

number of queries required is therefore of order at most

⌈log2 d∗⌉∑
i=0

√
k · 2i · i ≤ 2

√
k · d∗ log d∗

⌈log2 d∗⌉∑
i=0

2−i/2

 = O(
√
k · d log d∗)

By an identical argument, if s and t are disconnected, the total number of queries is

O(
√
k · d log dmax), where dmax is the longest s-t path in G.

We now use this improved connectivity decision algorithm as a subroutine for a path

search algorithm.

B. Search to decision reduction

Lemma 2 (Solution to stochastic connectivity k-CTP on node-disjoint path graphs). Let G

be a graph where all simple s-t paths have disjoint vertices from each other, and let G′ be a

subgraph of G with at most k deleted edges, and shortest s-t path length d∗. There exists

an algorithm that, given G, for all G′, identifies an unblocked s-t path in G′ with probability

at least 2
3
, and makes O(

√
k · d∗ log d∗ log log k) queries to the edge oracle for G′.

8

Proof. Once again, the solution is to binary search, but now over subsets of the paths as

opposed to guesses of the shortest path length. Note importantly that we need only consider

the (k+1) shortest paths in G, because at least one of those must be unblocked in G′. The

procedure is stated precisely in Algorithm 3.

Algorithm 3 Pathfinding algorithm for node-disjoint path graphs
1: S ← G represents the subgraph we recurse over

2: Remove all but the shortest k + 1 s-t paths from S

3: while S consists of more than 1 s-t path do

4: p← number of s-t paths in S

5: Slow ← subgraph of S consisting of shortest
⌊p
2

⌋
paths

6: Shigh ← subgraph of S consisting of longest
⌈p
2

⌉
paths

7: for C · log log k iterations do

8: Run our connectivity algorithm on Slow, with a promise of ≤
⌊p
2

⌋
blocked paths

9: if the majority of iterations say Slow is connected then

10: S ← Slow

11: else

12: S ← Shigh

13: Return the single path in S

Through appropriate choice of C, we ensure that the algorithm errs with probability at

most 1
3 log(k+1)

each execution of the while loop (since our connectivity algorithm has bounded

error). Thus, over the log(k + 1) executions of the while loop, we accumulate total error

probability bounded by 1
3
. Now, note that since we always check connectivity on the shorter

half of the paths first, whenever we check connectivity on a subgraph not containing the

shortest unblocked path, it has longest path shorter than the shortest unblocked path. So,

running our connectivity algorithm always takes O(
√

p
2
· d∗ log d∗) queries. Since p is halved

every execution of the while loop, the total query complexity is of order

√
k · d∗ log d∗ log log k

(
log k∑
i=0

k

2i

)
= O(

√
k · d∗ log d∗ log log k)

So we have found an Õ(
√
k · d) algorithm for this model of k-CTP on graphs with node-

9

disjoint paths. These techniques do not apply to general graphs, but the fact that we’ve

shown good performance on the graphs from which classical lower bounds were derived

suggests there could be a possibility of improvement in general. In the next section, we’ll

show that as long as k and d are similar in magnitude, no polynomial improvement on this

algorithm is possible.

C. Quantum lower bound

To show that a Ω(
√
k · d) lower bound holds in the case of node-disjoint paths, we apply a

strategy called the adversary method, introduced by Ambainis in 2000 [12]. This method

is effectively the dual of the span program method for upper bounds. Ambainis’s statement

of the bound is described in Appendix B. Recall the node-disjoint path graph of FIG 2, with

k + 1 paths all of length d. Using notation as in Ambainis’s statement, we let X be the set

of inputs where all paths are blocked in exactly one edge except for the top path, and Y be

the set of inputs where all paths are blocked in exactly one edge except for a single path

among the bottom k paths. R(x, y) holds when x and y differ in exactly 2 places. For any

x, there are k · d ways to reach a y by modifying 2 bits (choose one of the d edges along

the top path to block; choose a path among the bottom k to unblock), and symmetrically

k · d x’s in relation with any given y. Then, note that for any given index, there are at most

max(k, d) y’s in relation to x such that xi ̸= yi, and vice versa for x’s in relation to a given

y. So, the basic adversary method gives an Ω(min(k, d)) lower bound on query complexity

for our model of k-CTP. We suspect with a more sophisticated adversary argument it would

be possible to show Ω(
√
k · d).

IV. DISCUSSION, APPLICATIONS AND NATURAL FURTHER DIRECTIONS

The question of how to get from our algorithm on node-disjoint paths to an equally good

algorithm on general graphs is a not an obvious one. However, one intermediate case that

may be worth studying is that of apex trees. An apex tree consists of a tree rooted at t,

where each leaf of the tree is then connected by a single edge to s. An algorithm for k-CTP

on apex trees is the main subroutine used in the current best classical algorithm to solve it

generally [4], so this would seem to be a natural next step to consider.

10

FIG. 3. A complete binary s-t apex tree

Apex trees are a good challenge to our method, because although they’re very structured,

the number of s-t paths grows exponentially in d. So, simple binary search doesn’t seem

feasible. One observation worth making, though, is that it’s possible we can get a better

analysis of our span program connectivity algorithm in some cases. As observed by Jeffery

et al, the witness complexity of the s-t connectivity span program is determined by the

effective resistance and capacitance of the input graph [13]. In particular, this means that if

we can guarantee that whenever s and t are connected there are many different unblocked

s-t paths, we can achieve improved runtime for checking connectivity, which seems relevant

in the case of complete apex trees where, unless there are blockages near the root, there will

be many s-t paths.

Even if we are unable to find generally applicable methods, it can also be worth studying

special cases of independent interest. For instance, in a 2019 paper Jeffery and Kimmel

observed a reduction of the problem of evaluating Boolean formulas composed of ANDs and

ORs to s-t connectivity testing on a certain class of planar graphs [14] [15]. In the light of

this interpretation, our result about node-disjoint paths yields the following corollary:

Lemma 3. Given a positive CNF formula ϕ on variables x1 . . . xn, if it is promised that the

values of x1 . . . xn differ in at most k places from known values y1 . . . yn, and yi ≥ xi for all

i, there exists an algorithm that with bounded error probability finds the smallest violated

clause in Õ(
√
k · d) quantum queries to x, where d is the size of this clause.

Thinking of clauses as paths and literals as edges, this follows directly from our above

work. Investigation of our k-CTP model on broader classes of graphs could yield stronger

formula evaluation results. Another potentially worthwhile direction would be to try and

solve the node-disjoint path case when it’s possible for G′ to have up to k edges not in G but

in an even larger pre-specified graph H – that is, we allow for addition as well as removal of

11

specific edges. If we could prove query complexity upper bounds on particular cases of that

problem, they could translate to query complexity upper bounds on CNF formula evaluation

without positivity or monotonicity constraints.

V. CONCLUSION

In this work, we defined a variant of path-finding problem in which the graph is known

ahead of time up to a constant number of edge deletions. We demonstrated an quantum

improvement from Ω(k ·d) query complexity in the classical case to O(k
√
d log k) in general,

and O(
√
k · d log d log log k) when all paths are node-disjoint. We showed an almost-tight

lower bound in the node-disjoint case when k ≈ d, but left open the question of the com-

plexity of the general case. We then discussed potential strategies to approach the general

case, and considered connections between this problem and Boolean formula evaluation.

This research is motivated by the fundamental importance of path-finding in graphs

across algorithms theory and practice. Prior work has established that quantum computa-

tion can allow path-finding in polynomially less time and fewer accesses to the graph than

the classical limits. We believe that further work studying hardness of path-finding under

parameterizations of the input is valuable for improving our understanding of what allows

this quantum speedup and what additional restrictions a quantum computer can exploit to

do better. This paper represents the initial steps towards understanding a particular direc-

tion of this parameterization, inspired by potential applications like packet routing in an

unreliable communication network. There remains much related work to be done, both in

resolving the questions raised in this paper, and in exploring path-finding through different

novel lenses.

Appendix A: Span program definitions

Definition 2 (Span programs [8]). A span program consists of a finite vector space V , a

target unit vector |T ⟩ ∈ V , n 0-sets I
(0)
1 , . . . , I

(0)
n ⊆ V , and n 1-sets I

(1)
1 , . . . , I

(1)
n ⊆ V . This

program is said to accept an input x ∈ {0, 1}n if

|T ⟩ ∈ span
⋃

i∈{1,...,n}

I
(xi)
i

12

Theorem 1 (Relationship between span programs and query complexity [9]). If a span

program accepts an input x, we say that the positive witness size for the program on x

is the minimum square magnitude ⟨w|w⟩ among vectors |w⟩ such that A |w⟩ = |T ⟩, where

A is the matrix whose columns are the available vectors under x.

If the span program rejects an input x, we say that the negative witness size for x is

the minimum value of ⟨w|BB† |w⟩, where the columns of B are all vectors in any I
(b)
i , and

|w⟩ is some vector such that ⟨w|T ⟩ = 1 but ⟨w|v⟩ = 0 for all available vectors v under x.

If there exists a span program computing a function P on binary inputs x, there exists a

two-sided bounded-error quantum algorithm to compute P while making

O

(√
max

x accepted
pos witness size of x max

x rejected
negative witness size of x

)
queries to bits of x.

Appendix B: Statement of basic adversary bound from [12]

Theorem 2 (Ambainis, adversary bound). Let f(x1, . . . , xN) be a function of n {0, 1}-

valued variables and X, Y be two sets of inputs such that f(x) ̸= f(y) if x ∈ X and y ∈ Y .

Let R ⊆ X × Y be such that

1. For every x ∈ X, there exist at least m different y ∈ Y such that (x, y) ∈ R.

2. For every y ∈ Y , there exist at least m′ different X such that (x, y) ∈ R .

3. For every x ∈ X and i ∈ {1, . . . , n}, there are at most l different y ∈ Y such that

(x, y) ∈ R and xi ̸= yi

4. For every y ∈ Y and i ∈ {1, . . . , n}, there are at most l′ different x ∈ X such that

(x, y) ∈ R and xi ̸= yi

Then, any quantum algorithm computing f uses Ω(
√

mm′

ll′
) queries.

[1] S. Westphal, A note on the k-canadian traveller problem, Information Processing Letters 106,

87 (2008).

13

[2] Y. Xu, M. Hu, B. Su, B. Zhu, and Z. Zhu, The canadian traveller problem and its competitive

analysis, Journal of Combinatorial Optimization 18, 195 (2009).

[3] M. Bender and S. Westphal, An optimal randomized online algorithm for the k-canadian

traveller problem on node-disjoint paths, J. Comb. Optim. 30, 87–96 (2015).

[4] E. D. Demaine, Y. Huang, C.-S. Liao, and K. Sadakane, Canadians should travel randomly,

in Automata, Languages, and Programming, edited by J. Esparza, P. Fraigniaud, T. Husfeldt,

and E. Koutsoupias (Springer Berlin Heidelberg, Berlin, Heidelberg, 2014) pp. 380–391.

[5] An alternative definition, which we call the location register model, enforces these locality

constraints by giving the oracle a portion of the Hilbert space not accessible to the algorithm,

which encodes the traveler’s location. This model seems to lend itself to interesting variants of

quantum walks, and Prof. Chuang observes there may be strategies involving Elitzur-Vaidman

measurements [16]. However, as our results here have been very limited, we will not discuss

them in this paper.

[6] A. C.-C. Yao, Probabilistic computations: Toward a unified measure of complexity, 18th

Annual Symposium on Foundations of Computer Science (sfcs 1977) , 222 (1977).

[7] C. Dürr, M. Heiligman, P. HOyer, and M. Mhalla, Quantum query complexity of some graph

problems, SIAM Journal on Computing 35, 1310 (2006).

[8] M. Karchmer and A. Wigderson, On span programs, in [1993] Proceedings of the Eigth Annual

Structure in Complexity Theory Conference (1993) pp. 102–111.

[9] B. W. Reichardt, Span programs and quantum query complexity: The general adversary

bound is nearly tight for every boolean function, in 2009 50th Annual IEEE Symposium on

Foundations of Computer Science (IEEE, 2009).

[10] A. Belovs and B. W. Reichardt, Span programs and quantum algorithms for st-connectivity

and claw detection, in Algorithms – ESA 2012 (Springer Berlin Heidelberg, 2012) pp. 193–204.

[11] Note that technically ensuring at most k blocked edges is stronger than ensuring at most k

blocked paths in the node-disjoint path case, however our analysis of the span program still

holds under this assumption.

[12] A. Ambainis, Quantum lower bounds by quantum arguments (2000), arXiv:quant-ph/0002066

[quant-ph].

[13] M. Jarret, S. Jeffery, S. Kimmel, and A. Piedrafita, enQuantum algorithms for connectivity

and related problems 10.4230/LIPICS.ESA.2018.49 (2018).

14

[14] S. Jeffery and S. Kimmel, Quantum algorithms for graph connectivity and formula evaluation

(2019), arXiv:1704.00765 [quant-ph].

[15] I originally had a large section of the paper on this topic because I thought I’d come up with

this idea, but stumbled upon this prior work a couple of days ago. Such is life.

[16] L. Vaidman, The elitzur-vaidman interaction-free measurements (2008), arXiv:0801.2777

[quant-ph].

15

