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A RECAP OF THE STORY

Theorem

For any d and o, there are constants C, k such that for any natural
rank function rk and any d-tensor T,

Pr [k(T}y, > £ rk(T)] > 1 — Ce™ " (D)
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A RECAP OF THE STORY

Theorem

For any d, o, and €, there's a constant x such that for any natural
rank function rk and any degree-d polynomial ¢,

II[)Ii [rk(¢p > wrk(T)] > 1 —¢



ERROR-CORRECTION CODE APPLICATION

NOISY DECODING BY SHALLOW CIRCUITS WITH
PARITIES: CLASSICAL AND QUANTUM

JOP BRIET, HARRY BUHRMAN, DAVI CASTRO-SILVA,
AND NIELS M. P. NEUMANN

ApsTRACT. We consider the problem of decoding corrupted error correcting
circuits in the classical and gquantum settings. We show
that any such classical eircuit can correctly recover only a vanishingly small
fraction of messages, if the codewords are sent over a noisy channel with
positive error rate. Previously this was known only for linear codes with
non-trivial dual distance, whereas our result applies to any code. By con-
trast, we give a simple quantum circuit that correctly decodes the Hadamard
code with probability ©(=?) even if a (1/2 — £)-fraction of a codeword is ad-
versarially corrupted.

Qur classical hardness result is based on an equi ribution phenom-
enon for multivariate polynomials over a finite field under biased input-
distributions. This is proved using a structure-versus-randomness strategy
based on a new notion of rank for high-dimensional polynomial maps that
may be of independent interest.

Qur quantum circuit is inspired by a non-local version of the Bernstein-
Vazirani problem, a technique to generate “poor man’s eat states” by Watts
et al., and a constant-depth quantum circuit for the OR function by Taka-
hashi and Tani.




WHAT ARE ERROR-CORRECTING CODES?

~ = “hi bob! this is alice.”



WHAT ARE ERROR-CORRECTING CODES?

z + N = “oi bwb! thipuis al36e.”
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WHAT ARE ERROR-CORRECTING CODES?

x = “hi bob! this is alice.”

1l

E(z) = “hi bob! this is alice.
hi bob! this is alice.
hi bob! this is alice.”



WHAT ARE ERROR-CORRECTING CODES?

E(z) + N = “hwtbou! tris ps alici.

) \ ii 4obp ph7?s is xlike.
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WHAT ARE ERROR-CORRECTING CODES?

E(x)+ N =

e

wtbou! tris pq alici
4obp ph7?s is|xlike
i brb! thin iv paice

D(E(z +N') = “hi bob! this is alice.”



WHAT ARE ERROR-CORRECTING CODES?

Error model:

No— 0 with probability p
| random field element with probability 1 — p



WHAT ARE ERROR-CORRECTING CODES?

Error model:

No— 0 with probability p
random field element with probability 1 — p
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WHAT ARE ERROR-CORRECTING CODES?
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WHAT ARE ERROR-CORRECTING CODES?
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EXAMPLE: WALSH-HADAMARD CODE

WH : {0,1}" — {0,1}*'
WH(x); = (x,1)
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WHAT 15 NC°[&]?

NC°:

- constant depth
- fan-in 2
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WHAT 15 NC°[&]?

NCO[@] :

- constant depth
- fan-in 2

- except for
arbitrary fan-in
parity gates
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WHAT 15 NC°[&]?
1
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NCY[g] : AND

- constant depth
- fan-in 2

- except for
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[BBCSN22] MAIN THEOREM

Theorem

Foranyp,d € N, p,e € (0,1) there exists ko(p, d, p, €) such that, for
any integers k > ko, n, any function (i.e. error-correcting code)
E: IF;‘, — I, and any degree-d polynomial (i.e. NC°[@] circuit) ¢,

Pr  [¢p(E(x)+Z)=x] <e.
x€Fs, Z~N,



INTUITION

Goal: Prxe]F’p‘, 2N, [@(E(x) +Z) =x] <.



INTUITION

Goal: Pryepy 5, [B(E(x) +2) =] <.

Idea: either ¢ has small rank (in which case the output space
will be too small to hit most x), or ¢ has large rank (in which
case it’s too sensitive to the errors).



INTUITION: LINEAR CASE
Goal: PrerF’;,, 2N, [UE@X) +Z) +v=1x] <e

» Suppose ¢ is degree-1; i.e., can be written as y — Uy + v.



INTUITION: LINEAR CASE
Goal: PrxeF;r;’ 2N, [UE@X) +Z) +v=1x] <e
» Suppose ¢ is degree-1; i.e., can be written as y — Uy + v.

» If rk(U) < k/2,im(U + v) is affine space of size at most
pk/ 2, 50 decoding probability < pk/2 /pk — p—k/z'



INTUITION: LINEAR CASE
Goal: PrerF’,;, 2N, [UE@X) +Z) +v=1x] <e

» Suppose rk(U) > k/2. Note it suffices to bound
Prz n,[UZ = x — v — UE(x)] for every fixed x.



INTUITION: LINEAR CASE

Goal: Przn, [UZ = x — v — UE(x)] < 279K

» Suppose rk(U) > k/2.

» To choose Z, first choose corrupted indices, then set values.
Equivalently, first take random restriction of U, then feed
random input.



INTUITION: LINEAR CASE

Goal: Przn, [UZ = x — v — UE(x)] < 279K

» Suppose rk(U) > k/2.

» To choose Z, first choose corrupted indices, then set values.
Equivalently, first take random restriction of U, then feed
random input.

» w.h.p. random restriction has rank at least (1 — p)k/4, so
probability of being in the kernel is less than p~(1=P)k/4,



ANALYTIC RANK FOR DEGREE-d POLYNOMIALS

Definition

arank;(¢) = — log, ( max Pr(p(x) = 1/’(3()])

P:Fi—Fk, deg(y)<d—1

(why same if linear?)



ANALYTIC RANK FOR DEGREE-d POLYNOMIALS
Definition

arank;(¢) = — log, ( max Pr(p(x) = 1/’(3()])

P:Fi—Fk, deg(y)<d—1

Equivalently,

arank = min —log, B« (0o =¥ (x))
(9) T, deg (1) <d—1 8p Toeky, xeky



MAIN THEOREM PROOF OUTLINE

» If high analytic rank:
» suffices to show equidistribution of ¢(Z)
» can be thought of in terms of rank of the restriction; arank
is natural so we apply the theorem from the other paper
» If low analytic rank:
» Equivalent to saying a related polynomial has high bias
» Functions with high bias have some coherent structure in
terms of their derivatives
» Exploiting that structure and doing some Fourier analysis,
can write the claim in terms of a lower-degree instance
» — win by induction



SOME TERMINOLOGY

Definition

Letting w = e2/?  for a function f: IF; — [Fp, we define

bias(f) = |Exemw ™|



SOME TERMINOLOGY

Definition

Letting w = e2/?  for a function f: IF; — Fp, we define

bias(f) = |Exemw ™|

Definition
For a polynomial P € Fy[xq,...,x,] and a vector 1 € Fg, we
define the “derivative”

ApP(x) = P(x +h) — P(x)



DERIVATIVE FACT 1
bias(f) = |Exemw ™|
ApP(x) = P(x+h) — P(x)

Fact

For any P, h, we always have

deg(AyP) < deg(P).



DERIVATIVE FACT 2

bias(f) = |Exemw ™|
ApP(x) = P(x+h) — P(x)

Theorem (Kaufman, Lovett)

There exists s(p,d, €) such that, if P € Fy[x1, ..., x,] has degree at
most d and bias at least e, then there exist hy, ..., hy € Fy,
T: IB‘;, — Fp, such that

P(x) =T(ApP(x),...,ApP(x))



MAIN THEOREM PROOF OUTLINE

» If high analytic rank:
» suffices to show equidistribution of ¢(Z)
» can be thought of in terms of rank of the restriction; arank
is natural so we apply the theorem from the other paper
» If low analytic rank:
» Equivalent to saying a related polynomial has high bias
» Functions with high bias have some coherent structure in
terms of their derivatives
» Exploiting that structure and doing some Fourier analysis,
can write the claim in terms of a lower-degree instance
» — win by induction



HIGH ANALYTIC RANK

Lemma
There exists R(d, p, €) such that, if deg(¢) < d and arank,(¢$) > R,

n k
Zfﬁfp[cﬁ(y—f-Z) =w| < eforally € Fy,w € T,



HIGH ANALYTIC RANK

Lemma
There exists R(d, p, €) such that, if deg(¢) < d and arank,(¢$) > R,

- < n k'
Zfﬁfp[qﬁ(y—FZ) w] < eforally € Fy,w e F,

Proof:

» Since x — ¢(y + x) — w has the same degree and analytic
rank as ¢, wlogy = w = 0.



HIGH ANALYTIC RANK

Lemma
There exists R(d, p, €) such that, if deg(¢) < d and arank,(¢) > R,

- < n k-
Zi’ﬁ[p[qﬁ(y—FZ) w] <eforally € Fj,weTF,

Proof:
» GOAL: Prz.n,[¢(Z) = 0] <e.

» First, sample I ~ [n];_, to be the corrupted coordinates,
then choose the noise values.



HIGH ANALYTIC RANK

Lemma
There exists R(d, p, €) such that, if deg(¢) < d and arank,(¢) > R,

- < n k-
ZE’/r\fp[¢(y+Z) w] <eforally € Fj,weTF,

Proof:
» GOAL: Prz.n,[¢(Z) = 0] <e.
» First, sample I ~ [n];_,, then choose the noise.
» Equivalently, randomly restrict ¢, then give random input.



HIGH ANALYTIC RANK

Lemma
There exists R(d, p, €) such that, if deg(¢) < d and arank,(¢) > R,

— n k
Zi’ﬁ[p[qﬁ(y—FZ) =w|] <eforally € Fy,w € F,,

Proof:
» GOAL: EIN[n]l,p Prze]F}Iq [gf)u(z) = O] <e
» Since the 0 polynomial has degree < 4,

IEIN[n} B Pr [¢|I( )=10] < EIN[H]H, p aranky (¢



HIGH ANALYTIC RANK

Lemma
There exists R(d, p, €) such that, if deg(¢) < d and arank,(¢) > R,

— n k
ZE’/r\fp[¢(y+Z) =w|] <eforally € Fy,w € F,,

Proof:
> GOAL: Efjy,_, P~ arankg(d1 < ¢

» Now, if we knew that analytic rank was natural, we could
just apply the random restriction theorem.



ANALYTIC RANK IS NATURAL

> Symmetry

» Sub-additivity

» Monotonicity under restrictions
» Lipschitz



MAIN THEOREM PROOF OUTLINE

» If high analytic rank:
> suffices to show equidistribution of ¢(Z)
» can be thought of in terms of rank of the restriction; arank
is natural so we apply the theorem from the other paper
» If low analytic rank:
» Equivalent to saying a related polynomial has high bias
» Functions with high bias have some coherent structure in
terms of their derivatives
» Exploiting that structure and doing some Fourier analysis,
can write the claim in terms of a lower-degree instance
» — win by induction



SMALL ANALYTIC RANK

Given: deg(¢) < d, arank(¢) < R
Goal: PrxeF;}g’ ZeN, [p(E(x)+Z) =x] <e.

arank(¢) < R

is equivalent to

Fp, deg(yp) <d — 1, Pr [p(x) = (x)] > p~*.

xe]F;,‘



SMALL ANALYTIC RANK
Given: deg(¢) < d, deg(v)) <d -1

Prem [¢(x) = ¢(x)] > p~~.
Goal: PrerF’;, 2N, [p(E(x)+Z) =x] <e.

Deﬁne(g: ¢_¢/P(y1)' . 'Jynavl7" .,Uk) = <v7¢(y)>



SMALL ANALYTIC RANK

Definquz ¢—¢/P(}/17~ . 'Jynavl7" -,Uk) = <v7¢(y)>

We have bias(P) = E, E, w®@®) = Pr[j(y) = 0] > p~R.



SMALL ANALYTIC RANK

Define ¢ = ¢ — 1, P(yi,...,yn,01,...,0¢) = (v, é(y))
We have bias(P) = E, E, w@9) = Pr[d(y) = 0] > p~X.

By Kaufman-Lovett, there exist s, (h1,w1), ..., (hs,ws), I such
that

P(y,v) = F(A(hhwl)P(y, v)y..., A(hs,ws)P(% 0)).



SMALL ANALYTIC RANK

Define Qz = ¢ - 2/)/ (y17 -y Yn, 01, ... avk) = <U, &(y»
P(% 'U) = F(A (hy,w1) (y» )7 . -aA(hs,ws)P(yav))'

Apw)P(y,0) = P(y + h,v +w) — P(y,0)
=P(y+h,w)+P(y+h,v) — P(y,v)
= (w, d(y + 1)) + (v, Ao (y))



SMALL ANALYTIC RANK

Define Qz = ¢ - 2/)/ (y17 -y Yn, 01, ... avk) = <U, &(y»
P(% 'U) = F(A (hy,w1) (y» )7 . -aA(hs,ws)P(yav))'

Apw)P(y,0) = P(y + h,v +w) — P(y,0)
=P(y+h,w)+P(y+h,v) — P(y,v)
= (w, d(y + 1)) + (v, Ao (y))



SMALL ANALYTIC RANK
Define ¢ = ¢ — 1, P(y1, -+, Yn, 01, - - -, 0k) = (0, d()).
Py0) = ({1,804 ) + 0120, 600) ) P 0.
o (080 1) + (0020, ) P9 ).

Letting f(x) = w"® and applying Fourier inversion,
WP = £(P(y,v)) = Zf(a)ww,..» — Zj?(a)wQa(y)Hma(y))
a€l;, a€l;

Where we define
S

Quly) = (oiwy, oy + hy)),

i=1

Yaly) =D il y).
i—1



SMALL ANALYTIC RANK
Define ¢ = ¢ — 1, P(y1, ..., Yn, 01, - -, 0%) = (0, B(y)).
Py0) = ({1,804 ) + 0120, 600) ) P 0.
o (080 1) + (0020, ) P9 ).

Letting f(x) = w* and applying Fourier inversion,
WP = £(P(y,v)) = Zf(a)ww,..» — Zj?(a)wQa(y)Hma(y))
a€l;, a€l;

Where we define
S

Quly) = (oiwy, oy + hy)),

i=1

Yaly) = Z aiAhié(y). +— deg < d
i=1



SMALL ANALYTIC RANK
Define gz; =¢—¢,Py1,...,Yn,01,...,0) = (v, &(y))

Puo) = Zf + (V0 ()

ae]Fs

deg(va(y)) < d

Now, note that

1g(y) = x] = Eyepp w0



SMALL ANALYTIC RANK
Define gz; =¢—¢,Py1,...,Yn,01,...,0) = (v, &(y))

WD = 37 Fa)wQeWHEan )

a€l;,

deg(va(y)) < d

Now, note that



SMALL ANALYTIC RANK
Define gz; =¢—¢,Py1,...,Yn,01,...,0) = (v, &(y))

WD = 37 Fa)wQeWHEan )

a€l;,

deg(va(y)) < d

Now, note that

— EveIF’;, Wwlooy)—x) _ Eve]Ff, WP+~ () —x)



SMALL ANALYTIC RANK
Define gz~$ =¢—¢,Py1,...,Yn,01,...,0) = (v, &(y))

WD = 37 Fa)wQeWHEan )

ae]F;,

deg(va(y)) < d

Now, note that
1g(y) = x] = Eyepp w0
- EveIF’;, Wwlooy)—x) _ Eve]Ff, WP+~ () —x)

= Zf(a)wQa(y) Eve]F’;, WO a—)®)



SMALL ANALYTIC RANK
Define gz; =¢—9, Py1,...,Yn,01,...,0) = (v, 0(y)).

deg(va(y)) <d

Prg(E(x) +Z) = X] = Exz1[¢(E( )+2) =«
~E., Y fla) gy O EQD)

a€l;,



SMALL ANALYTIC RANK
Define ¢~5 =¢—¢,Py1,...,Yn,01,...,0) = (v, (5(3/))

deg(va(y)) <d

Pr[¢(E(x) + Z) = x] <

S ([F(@)| Eaz [0 B, gy o0 E22)))

aeIE‘;,



SMALL ANALYTIC RANK
Define gz; =¢—¢,Py1,...,Yn,01,...,0) = (v, &(y))

deg(va(y)) <d

Pr{¢(E(x) + Z) = 4] <

(z [?(a)) max s ‘wQa(y) E ey 00— HEQD)

a€l;,



SMALL ANALYTIC RANK
Define ¢~5 =¢—¢,Py1,...,Yn,01,...,0) = (v, (5(3/))

deg(va(y)) <d

Pr{¢(E(x) + 2) =] <

P ma By g [0 gy 0@l 9ED2)
4



SMALL ANALYTIC RANK
Define ¢~5 =¢—9, Py1,...,Yn,01,...,0) = (v, 0(y)).

deg(va(y)) <d

Pr[¢(E(x) + Z) = x| <
p*/? max By 7 1[(va — ¥)(E(x) + Z) = ¥]

a€l;,



SMALL ANALYTIC RANK
Define ¢~5 =¢—¢,Py1,...,Yn,01,...,0) = (v, (5(3/))

deg(va(y)) <d

Pr(E() +7) = ¥] <
p? maxcPrl(7a — ¥)(E() +2) = 3]

<e€

We're now looking at (7, — %), which is a polynomial of degree
d — 1 - Dby the induction hypothesis, beyond some k the above
will always hold.



MAIN THEOREM PROOF OUTLINE

» If high analytic rank:
> suffices to show equidistribution of ¢(Z)
» can be thought of in terms of rank of the restriction; arank
is natural so we apply the theorem from the other paper
» If low analytic rank:
» Equivalent to saying a related polynomial has high bias
» Functions with high bias have some coherent structure in
terms of their derivatives
» Exploiting that structure and doing some Fourier analysis,
can write the claim in terms of a lower-degree instance
» — win by induction



CORE PROPERTY

Definition
A notion of rank satisfies the (A, B)-core property if, for every

(sufficiently high-rank) d-tensor T, there exist [, ..., J; C of size
at most A(rk(T)) such that rk(T,, > B(rk(T)).



CORE PROPERTY

Definition
A notion of rank satisfies the (A, B)-core property if, for every

(sufficiently high-rank) d-tensor T, there exist [, ..., J; C of size
at most A(rk(T)) such that rk(T,, > B(rk(T)).

Definition
rk satisfies the linear core property if A and B are linear
functions.



MATRIX RANK SATISFIES CORE PROPERTY

For matrix rank, we can set both A and B to be x — x (perfect
linear core property).

take only rows forming
a basis of the span

— —_‘ then do the same for columns

l' Siinlie




WHY LINEAR CORE PROPERTY IS STRONG

Theorem

If a natural rank rk satisfies the linear core property, for every o there
exist C, x> 0 such that, for every d-tensor T,

Pr [k(T)p,,) > £k(T)] > 1 — Ce™*™(D.

I~[n] oy I~ 4]0



WHY LINEAR CORE PROPERTY IS STRONG

Theorem

If a natural rank rk satisfies the linear core property, for every o there
exist C, k > 0 such that, for every d-tensor T,

Pr [tk(T}y,,) > #1k(T)] > 1 — Ce™ " (D).,

I~[mi]o,.. L~ [ndlo

Proof: Fix some sets J1, ..., J; of size ark(T) such that

rk(Tj,, > brk(T). Choose A = b/(3da). By Chernoff bound, if
we do a (1 — A)-restriction, w.h.p. all J;s have at least (1 — 2))
fraction remaining.



WHY LINEAR CORE PROPERTY IS STRONG

Theorem

If a natural rank rk satisfies the linear core property, for every o there
exist C, x> 0 such that, for every d-tensor T,

Pr [k(T}y,,) > £ rk(T)] > 1 — Ce™ ™50

IN[nl]U'y"'JdN[nd]O'

Proof: Fix some sets J1, ..., J; of size ark(T) such that

rk(Tj,, = brk(T). Choose A = b/(3da). By Chernoff bound, if
we do a (1 — A)-restriction, w.h.p. all J;s have at least (1 — 2)\)
fraction remaining.

Pr [rk(Tjp,,) = grk(T)] >1 - Ce (D),

I~[r]i—xseeslg~[nali—a



WHY LINEAR CORE PROPERTY IS STRONG

Theorem

If a natural rank rk satisfies the linear core property, for every o there
exist C, k > 0 such that, for every d-tensor T,

Pr [tk(T}y,,) > #1k(T)] > 1 — Ce™ "™ (1),

IN[Vll]g,“.,IdN[TZd]U

Pr [tk (T}, ) > %rk(T)] >1 - Ce k(D)

I~[ng)1— e lg~[ngli—a

Now, just iterate this argument ¢ times until (1 — \)! < .



CONCLUSION / LINGERING QUESTIONS



