Discussion: Error-Correcting Codes and the Core Property

Nathan

2023

A RECAP OF THE STORY

A RECAP OF THE STORY

Theorem

For any d and σ*, there are constants C*, κ *such that for any natural rank function* rk *and any d-tensor T,*

$$
\Pr_{I_1 \sim [n_1]_\sigma, \dots, I_d \sim [n_d]_\sigma} [\text{rk}(T_{|I_{[d]}} \ge \kappa \text{rk}(T)] \ge 1 - Ce^{-\kappa \text{rk}(T)}
$$

A RECAP OF THE STORY

Theorem

For any d, σ*, and* ϵ*, there's a constant* κ *such that for any natural rank function* rk *and any degree-d polynomial* ϕ*,*

$$
\Pr_{I \sim [n]_{\sigma}} [\text{rk}(\phi_{|I} \geq \kappa \text{rk}(T)] \geq 1 - \epsilon
$$

ERROR-CORRECTION CODE APPLICATION

NOISY DECODING BY SHALLOW CIRCUITS WITH PARITIES: CLASSICAL AND QUANTUM

JOP BRIËT, HARRY BUHRMAN, DAVI CASTRO-SILVA, AND NIELS M P NEHMANN

ABSTRACT. We consider the problem of decoding corrupted error correcting codes with $NC^0[\oplus]$ circuits in the classical and quantum settings. We show that any such classical circuit can correctly recover only a vanishingly small fraction of messages, if the codewords are sent over a noisy channel with positive error rate. Previously this was known only for linear codes with non-trivial dual distance, whereas our result applies to any code. By contrast, we give a simple quantum circuit that correctly decodes the Hadamard code with probability $\Omega(\varepsilon^2)$ even if a $(1/2 - \varepsilon)$ -fraction of a codeword is adversarially corrupted.

Our classical hardness result is based on an equidistribution phenomenon for multivariate polynomials over a finite field under biased inputdistributions. This is proved using a structure-versus-randomness strategy based on a new notion of rank for high-dimensional polynomial maps that may be of independent interest.

Our quantum circuit is inspired by a non-local version of the Bernstein-Vazirani problem, a technique to generate "poor man's cat states" by Watts et al., and a constant-depth quantum circuit for the OR function by Takahashi and Tani

 $x =$ "hi bob! this is alice."

 $x+\mathcal{N}$ = "oi bwb! thipuis al36e." $\left(\left(\left(\begin{array}{cc} 0 & 1 \end{array}\right) & 0 \end{array}\right)$

 $E(x) + \mathcal{N}$ = "hwtbou! tris ps alici. ii 4obp ph?s is xlike. hi brb! thin iv aaiceq

 $D(E(x + \mathcal{N}) =$ "hi bob! this is alice."

Error model:

$$
\mathcal{N}_{\rho} = \begin{cases} 0 \text{ with probability } \rho \\ \text{random field element with probability } 1 - \rho \end{cases}
$$

Error model:

 $\mathcal{N}_{\rho }=% \begin{pmatrix} \omega_{\mu } & 0 & 0\ 0 & \omega_{\mu } & 0 & 0\ 0 & 0 & \omega_{\mu } & 0 & 0\ 0 & 0 & 0 & 0 & 0\ 0 & 0 & 0 & 0 & 0\ 0 & 0 & 0 & 0 & 0 & 0\ 0 & 0 & 0 & 0 & 0 & 0\ 0 & 0 & 0 & 0 & 0 & 0\ 0 & 0 & 0 & 0 & 0 & 0\ 0 & 0 & 0 & 0 & 0 & 0\ 0 & 0 & 0 & 0 & 0 & 0\ 0 & 0 & 0 & 0 & 0 & 0\$ \int 0 with probability ρ random field element with probability $1-\rho$

$$
x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad x_7 \quad x_8 \quad x_9
$$
\n
$$
\mathcal{N}_{2/3} = \begin{bmatrix} 0 & \mathbf{r} & 0 & 0 & 0 & \mathbf{r} & 0 & 0 & \mathbf{r} \\ x_1 & \mathbf{r} & x_3 & x_4 & x_5 & \mathbf{r} & x_7 & x_8 & \mathbf{r} \end{bmatrix}
$$

EXAMPLE: WALSH-HADAMARD CODE

 $WH: \{0,1\}^n \rightarrow \{0,1\}^{2^n}$ $WH(x)_i = \langle x, i \rangle$

[BBCSN22] MAIN THEOREM

Theorem

For any p, d $\in \mathbb{N}$, ρ , $\epsilon \in (0,1)$ *there exists* $k_0(p,d,\rho,\epsilon)$ *such that, for any integers* $k \geq k_0$, *n*, *any function* (*i.e. error-correcting code*) $E: \mathbb{F}_p^k \to \mathbb{F}_p^n$, and any degree-d polynomial (i.e. $\mathsf{NC}^0[\oplus]$ circuit) ϕ ,

$$
\Pr_{x \in \mathbb{F}_p^k, Z \sim \mathcal{N}_\rho} [\phi(E(x) + Z) = x] \le \epsilon.
$$

INTUITION

Goal: $Pr_{x \in \mathbb{F}_p^k, Z \sim \mathcal{N}_\rho}[\phi(E(x) + Z) = x] \le \epsilon.$

INTUITION

Goal:
$$
\Pr_{x \in \mathbb{F}_p^k, Z \sim \mathcal{N}_\rho} [\phi(E(x) + Z) = x] \le \epsilon.
$$

Idea: either ϕ has small rank (in which case the output space will be too small to hit most *x*), or ϕ has large rank (in which case it's too sensitive to the errors).

$$
\text{Goal: } \Pr_{x \in \mathbb{F}_p^k, Z \sim \mathcal{N}_\rho} [U(E(x) + Z) + v = x] \le \epsilon.
$$

Suppose ϕ is degree-1; i.e., can be written as $y \mapsto Uy + v$.

$$
\text{Goal: } \Pr_{x \in \mathbb{F}_p^k, \ Z \sim \mathcal{N}_\rho}[U(E(x) + Z) + v = x] \le \epsilon.
$$

- ▶ Suppose ϕ is degree-1; i.e., can be written as $\psi \mapsto U\psi + \nu$.
- ▶ If $rk(U)$ $\leq k/2$, $im(U + v)$ is affine space of size at most $p^{k/2}$, so decoding probability $\leq p^{k/2}/p^k = p^{-k/2}.$

Goal:
$$
\Pr_{x \in \mathbb{F}_p^k, Z \sim \mathcal{N}_\rho}[U(E(x) + Z) + v = x] \le \epsilon.
$$

▶ Suppose $rk(U) > k/2$. Note it suffices to bound $\Pr_{Z \sim \mathcal{N}_\rho}[UZ = x - v - UE(x)]$ for every fixed *x*.

$$
Goal: Pr_{Z \sim \mathcal{N}_\rho}[UZ = x - v - UE(x)] \le 2^{-\Omega(k)}
$$

- \blacktriangleright Suppose $rk(U) > k/2$.
- ▶ To choose *Z*, first choose corrupted indices, then set values. Equivalently, first take random restriction of *U*, then feed random input.

$$
Goal: Pr_{Z \sim \mathcal{N}_\rho}[UZ = x - v - UE(x)] \le 2^{-\Omega(k)}
$$

- \blacktriangleright Suppose $rk(U) > k/2$.
- ▶ To choose *Z*, first choose corrupted indices, then set values. Equivalently, first take random restriction of *U*, then feed random input.
- \triangleright w.h.p. random restriction has rank at least $(1 \rho)k/4$, so probability of being in the kernel is less than $p^{-(1-\rho)k/4}.$

ANALYTIC RANK FOR DEGREE-*d* POLYNOMIALS

Definition

$$
\operatorname{arank}_{d}(\phi) = -\log_{p} \left(\max_{\psi: \mathbb{F}_{p}^{n} \to \mathbb{F}_{p}^{k}, \deg(\psi) \leq d-1} \Pr[\phi(x) = \psi(x)] \right)
$$

(why same if linear?)

ANALYTIC RANK FOR DEGREE-*d* POLYNOMIALS

Definition

$$
\operatorname{arank}_{d}(\phi) = -\log_{p} \left(\max_{\psi : \mathbb{F}_{p}^{n} \to \mathbb{F}_{p}^{k}, \deg(\psi) \leq d-1} \Pr[\phi(x) = \psi(x)] \right)
$$

Equivalently,

$$
\operatorname{arank}_{d}(\phi) = \min_{\psi: \mathbb{F}_p^n \to \mathbb{F}_p^k, \deg(\psi) \le d-1} - \log_p \mathbb{E}_{v \in \mathbb{F}_p^k, \chi \in \mathbb{F}_p^n} \omega^{\langle v, \phi(x) - \psi(x) \rangle}.
$$

MAIN THEOREM PROOF OUTLINE

\blacktriangleright If high analytic rank:

- \blacktriangleright suffices to show equidistribution of $\phi(Z)$
- \triangleright can be thought of in terms of rank of the restriction; arank is natural so we apply the theorem from the other paper
- \blacktriangleright If low analytic rank:
	- ▶ Equivalent to saying a related polynomial has high bias
	- ▶ Functions with high bias have some coherent structure in terms of their derivatives
	- ▶ Exploiting that structure and doing some Fourier analysis, can write the claim in terms of a lower-degree instance
	- $\blacktriangleright \implies$ win by induction

SOME TERMINOLOGY

Definition

Letting $\omega = e^{2i\pi/p}$, for a function $f: \mathbb{F}_p^n \to \mathbb{F}_p$, we define $\text{bias}(f) = |\mathbb{E}_{x \in \mathbb{F}_p^n} \omega^{f(x)}|$

SOME TERMINOLOGY

Definition

Letting $\omega = e^{2i\pi/p}$, for a function $f: \mathbb{F}_p^n \to \mathbb{F}_p$, we define

$$
bias(f) = |\mathbb{E}_{x \in \mathbb{F}_p^n} \omega^{f(x)}|
$$

Definition

For a polynomial $P \in \mathbb{F}_p[x_1, \ldots, x_n]$ and a vector $h \in \mathbb{F}_p^n$, we define the "derivative"

$$
\Delta_h P(x) = P(x+h) - P(x)
$$

DERIVATIVE FACT 1

bias
$$
(f)
$$
 = $|\mathbb{E}_{x \in \mathbb{F}_p^n} \omega^{f(x)}|$
 $\Delta_h P(x) = P(x + h) - P(x)$

Fact

For any P, h, we always have

 $deg(\Delta_h P) < deg(P).$

DERIVATIVE FACT 2

bias
$$
(f)
$$
 = $|\mathbb{E}_{x \in \mathbb{F}_p^n} \omega^{f(x)}|$
 $\Delta_h P(x) = P(x + h) - P(x)$

Theorem (Kaufman, Lovett)

There exists s(p, d, ϵ) *such that, if* $P \in \mathbb{F}_p[x_1, \ldots, x_n]$ *has degree at most d and bias at least* ϵ *, then there exist* $h_1, \ldots, h_r \in \mathbb{F}_{p}^n$ *,* $\Gamma: \mathbb{F}_p^s \to \mathbb{F}_p$ *, such that*

$$
P(x) \equiv \Gamma(\Delta_{h_1} P(x), \ldots, \Delta_{h_s} P(x))
$$

MAIN THEOREM PROOF OUTLINE

▶ **If high analytic rank:**

- \blacktriangleright suffices to show equidistribution of $\phi(Z)$
- \triangleright can be thought of in terms of rank of the restriction; arank is natural so we apply the theorem from the other paper
- \blacktriangleright If low analytic rank:
	- ▶ Equivalent to saying a related polynomial has high bias
	- ▶ Functions with high bias have some coherent structure in terms of their derivatives
	- ▶ Exploiting that structure and doing some Fourier analysis, can write the claim in terms of a lower-degree instance
	- $\blacktriangleright \implies$ win by induction

Lemma

There exists $R(d, \rho, \epsilon)$ *such that, if* $deg(\phi) \leq d$ *and* $argh(\phi) \geq R$,

$$
\Pr_{Z \sim \mathcal{N}_p}[\phi(y+Z) = w] \le \epsilon \text{ for all } y \in \mathbb{F}_p^n, w \in \mathbb{F}_p^k.
$$

Lemma

There exists $R(d, \rho, \epsilon)$ *such that, if* $deg(\phi) \leq d$ *and* $argh(\phi) \geq R$,

$$
\Pr_{Z \sim \mathcal{N}_p}[\phi(y+Z) = w] \le \epsilon \text{ for all } y \in \mathbb{F}_p^n, w \in \mathbb{F}_p^k.
$$

Proof:

▶ Since $x \mapsto \phi(y + x) - w$ has the same degree and analytic rank as ϕ , wlog $\psi = w = 0$.

Lemma

There exists $R(d, \rho, \epsilon)$ *such that, if* $deg(\phi) \leq d$ *and* $argh(\phi) \geq R$,

$$
\Pr_{Z \sim \mathcal{N}_p}[\phi(y+Z) = w] \le \epsilon \text{ for all } y \in \mathbb{F}_p^n, w \in \mathbb{F}_p^k.
$$

- \blacktriangleright GOAL: $Pr_{Z \sim \mathcal{N}_p}[\phi(Z) = 0] \leq \epsilon$.
- **►** First, sample $I \sim [n]_{1-\rho}$ to be the corrupted coordinates, then choose the noise values.

Lemma

There exists $R(d, \rho, \epsilon)$ *such that, if* $deg(\phi) \leq d$ *and* $argh(\phi) \geq R$,

$$
\Pr_{Z \sim \mathcal{N}_p}[\phi(y+Z) = w] \le \epsilon \text{ for all } y \in \mathbb{F}_p^n, w \in \mathbb{F}_p^k.
$$

- \blacktriangleright GOAL: $Pr_{Z \sim \mathcal{N}_p}[\phi(Z) = 0] \leq \epsilon$.
- **►** First, sample $I \sim [n]_{1-\rho}$, then choose the noise.
- ▶ Equivalently, randomly restrict ϕ , then give random input.

Lemma

There exists $R(d, \rho, \epsilon)$ *such that, if* $deg(\phi) \leq d$ *and* $argh(\phi) \geq R$,

$$
\Pr_{Z \sim \mathcal{N}_p}[\phi(y+Z) = w] \le \epsilon \text{ for all } y \in \mathbb{F}_p^n, w \in \mathbb{F}_p^k.
$$

- ► GOAL: $\mathbb{E}_{I \sim [n]_{1-\rho}} \Pr_{z \in \mathbb{F}_p^I} [\phi_{|I}(z) = 0] \leq \epsilon$.
- \blacktriangleright Since the 0 polynomial has degree $< d$,

$$
\mathbb{E}_{I \sim [n]_{1-\rho}} \Pr_{z \in \mathbb{F}_p^I} [\phi_{|I}(z) = 0] \leq \mathbb{E}_{I \sim [n]_{1-\rho}} p^{-\operatorname{arank}_d(\phi_{|I|})}
$$

Lemma

There exists $R(d, \rho, \epsilon)$ *such that, if* $deg(\phi) \leq d$ *and* $argh(\phi) \geq R$,

$$
\Pr_{Z \sim \mathcal{N}_p}[\phi(y+Z) = w] \le \epsilon \text{ for all } y \in \mathbb{F}_p^n, w \in \mathbb{F}_p^k.
$$

- ► GOAL: $\mathbb{E}_{I \sim [n]_{1-\rho}} p^{-\operatorname{arank}_d(\phi_{|I}} \leq \epsilon$.
- ▶ Now, if we knew that analytic rank was natural, we could just apply the random restriction theorem.

ANALYTIC RANK IS NATURAL

- ▶ Symmetry
- ▶ Sub-additivity
- ▶ Monotonicity under restrictions
- ▶ Lipschitz

MAIN THEOREM PROOF OUTLINE

\blacktriangleright If high analytic rank:

- \blacktriangleright suffices to show equidistribution of $\phi(Z)$
- ▶ can be thought of in terms of rank of the restriction; arank is natural so we apply the theorem from the other paper

▶ **If low analytic rank:**

- ▶ Equivalent to saying a related polynomial has high bias
- ▶ Functions with high bias have some coherent structure in terms of their derivatives
- ▶ Exploiting that structure and doing some Fourier analysis, can write the claim in terms of a lower-degree instance
- $\blacktriangleright \implies$ win by induction

Given: deg(
$$
\phi
$$
) $\leq d$, arank(ϕ) $< R$
Goal: $\Pr_{x \in \mathbb{F}_p^k, Z \sim \mathcal{N}_\rho} [\phi(E(x) + Z) = x] \leq \epsilon$.

 $\text{arank}(\phi) < R$

is equivalent to

$$
\exists \psi, \deg(\psi) \leq d-1, \Pr_{x \in \mathbb{F}_p^n} [\phi(x) = \psi(x)] \geq p^{-R}.
$$

Given: deg(
$$
\phi
$$
) $\leq d$, deg(ψ) $\leq d - 1$
\n $\Pr_{x \in \mathbb{F}_p^n} [\phi(x) = \psi(x)] \geq p^{-R}$.
\nGoal: $\Pr_{x \in \mathbb{F}_p^k, Z \sim \mathcal{N}_\rho} [\phi(E(x) + Z) = x] \leq \epsilon$.

Define
$$
\tilde{\phi} = \phi - \psi
$$
, $P(y_1, \ldots, y_n, v_1, \ldots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.

Given: deg(
$$
\phi
$$
) $\leq d$, deg(ψ) $\leq d - 1$
\n $\Pr_{x \in \mathbb{F}_p^n} [\phi(x) = \psi(x)] \geq p^{-R}$.
\nGoal: $\Pr_{x \in \mathbb{F}_p^k, Z \sim \mathcal{N}_\rho} [\phi(E(x) + Z) = x] \leq \epsilon$.

Define
$$
\tilde{\phi} = \phi - \psi
$$
, $P(y_1, \ldots, y_n, v_1, \ldots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.

We have
$$
\text{bias}(P) = \mathbb{E}_y \mathbb{E}_v \omega^{\langle v, \tilde{\phi}(y) \rangle} = \Pr[\tilde{\phi}(y) = 0] \ge p^{-R}.
$$

Define
$$
\tilde{\phi} = \phi - \psi
$$
, $P(y_1, ..., y_n, v_1, ..., v_k) = \langle v, \tilde{\phi}(y) \rangle$.
We have $\text{bias}(P) = \mathbb{E}_y \mathbb{E}_v \omega^{\langle v, \tilde{\phi}(y) \rangle} = \Pr[\tilde{\phi}(y) = 0] \ge p^{-R}$.

By Kaufman-Lovett, there exist s , $(h_1, w_1), \ldots, (h_s, w_s)$, Γ such that

$$
P(y,v)=\Gamma(\Delta_{(h_1,w_1)}P(y,v),\ldots,\Delta_{(h_s,w_s)}P(y,v)).
$$

Define
$$
\tilde{\phi} = \phi - \psi
$$
, $P(y_1, \ldots, y_n, v_1, \ldots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.
\n $P(y, v) = \Gamma(\Delta_{(h_1, w_1)} P(y, v), \ldots, \Delta_{(h_s, w_s)} P(y, v)).$

$$
\Delta_{(h,w)}P(y,v) = P(y+h, v+w) - P(y,v)
$$

= $P(y+h, w) + P(y+h, v) - P(y, v)$
= $\langle w, \tilde{\phi}(y+h) \rangle + \langle v, \Delta_h \tilde{\phi}(y) \rangle$

Define
$$
\tilde{\phi} = \phi - \psi
$$
, $P(y_1, \ldots, y_n, v_1, \ldots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.
\n $P(y, v) = \Gamma(\Delta_{(h_1, w_1)} P(y, v), \ldots, \Delta_{(h_s, w_s)} P(y, v)).$

$$
\Delta_{(h,w)}P(y,v) = P(y+h, v+w) - P(y,v)
$$

= $P(y+h, w) + P(y+h, v) - P(y, v)$
= $\langle w, \tilde{\phi}(y+h) \rangle + \langle v, \Delta_h \tilde{\phi}(y) \rangle$

Define
$$
\tilde{\phi} = \phi - \psi
$$
, $P(y_1, ..., y_n, v_1, ..., v_k) = \langle v, \tilde{\phi}(y) \rangle$.
\n
$$
P(y, v) = \Gamma \bigg(\Big(\langle w_1, \tilde{\phi}(y + h_1) \rangle + \langle v, \Delta_{h_1} \tilde{\phi}(y) \rangle \Big) P(y, v),
$$
\n
$$
..., \Big(\langle w_s, \tilde{\phi}(y + h_s) \rangle + \langle v, \Delta_{h_1} \tilde{\phi}(y) \rangle \Big) P(y, v) \bigg).
$$

Letting $f(x) = \omega^{\Gamma(x)}$ and applying Fourier inversion, ω

$$
\omega^{P(y,v)} = f(P(y,v)) = \sum_{\alpha \in \mathbb{F}_p^s} \widehat{f}(\alpha) \omega^{\langle \alpha, \dots \rangle} = \sum_{\alpha \in \mathbb{F}_p^s} \widehat{f}(\alpha) \omega^{Q_{\alpha}(y) + \langle v, \gamma_{\alpha}(y) \rangle}
$$

Where we define

$$
Q_{\alpha}(y) = \sum_{i=1}^{s} \langle \alpha_i w_i, \tilde{\phi}(y + h_i) \rangle,
$$

$$
\gamma_{\alpha}(y) = \sum_{i=1}^{s} \alpha_i \Delta_{h_i} \tilde{\phi}(y).
$$

Define
$$
\tilde{\phi} = \phi - \psi
$$
, $P(y_1, ..., y_n, v_1, ..., v_k) = \langle v, \tilde{\phi}(y) \rangle$.
\n
$$
P(y, v) = \Gamma\left(\left(\langle w_1, \tilde{\phi}(y + h_1) \rangle + \langle v, \Delta_{h_1} \tilde{\phi}(y) \rangle \right) P(y, v), \dots, \left(\langle w_s, \tilde{\phi}(y + h_s) \rangle + \langle v, \Delta_{h_1} \tilde{\phi}(y) \rangle \right) P(y, v)\right).
$$

Letting $f(x) = \omega^x$ and applying Fourier inversion,

$$
\omega^{P(y,v)} = f(P(y,v)) = \sum_{\alpha \in \mathbb{F}_p^s} \widehat{f}(\alpha) \omega^{\langle \alpha, \dots \rangle} = \sum_{\alpha \in \mathbb{F}_p^s} \widehat{f}(\alpha) \omega^{Q_{\alpha}(y) + \langle v, \gamma_{\alpha}(y) \rangle}
$$

Where we define

$$
Q_{\alpha}(y) = \sum_{i=1}^{s} \langle \alpha_i w_i, \tilde{\phi}(y + h_i) \rangle,
$$

$$
\gamma_{\alpha}(y) = \sum_{i=1}^{s} \alpha_i \Delta_{h_i} \tilde{\phi}(y). \leftarrow \deg < d
$$

Define
$$
\tilde{\phi} = \phi - \psi
$$
, $P(y_1, \ldots, y_n, v_1, \ldots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.

$$
\omega^{P(y,v)} = \sum_{\alpha \in \mathbb{F}_p^s} \widehat{f}(\alpha) \omega^{Q_{\alpha}(y) + \langle v, \gamma_{\alpha}(y) \rangle}
$$

 $deg(\gamma_\alpha(y)) < d$

$$
\mathbf{1}[\phi(y)=x]=\mathbb{E}_{v\in\mathbb{F}_p^k}\,\omega^{\langle v,\phi(y)-x\rangle}
$$

Define
$$
\tilde{\phi} = \phi - \psi
$$
, $P(y_1, \ldots, y_n, v_1, \ldots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.

$$
\omega^{P(y,v)} = \sum_{\alpha \in \mathbb{F}_p^s} \widehat{f}(\alpha) \omega^{Q_{\alpha}(y) + \langle v, \gamma_{\alpha}(y) \rangle}
$$

 $deg(\gamma_\alpha(y)) < d$

$$
\mathbf{1}[\phi(y) = x] = \mathbb{E}_{v \in \mathbb{F}_p^k} \omega^{\langle v, \phi(y) - x \rangle}
$$

$$
= \mathbb{E}_{v \in \mathbb{F}_p^k} \omega^{\langle v, \phi(y) - x \rangle}
$$

Define
$$
\tilde{\phi} = \phi - \psi
$$
, $P(y_1, \ldots, y_n, v_1, \ldots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.

$$
\omega^{P(y,v)} = \sum_{\alpha \in \mathbb{F}_p^s} \widehat{f}(\alpha) \omega^{Q_{\alpha}(y) + \langle v, \gamma_{\alpha}(y) \rangle}
$$

 $deg(\gamma_\alpha(y)) < d$

$$
\mathbf{1}[\phi(y) = x] = \mathbb{E}_{v \in \mathbb{F}_p^k} \omega^{\langle v, \phi(y) - x \rangle}
$$

$$
= \mathbb{E}_{v \in \mathbb{F}_p^k} \omega^{\langle v, \phi(y) - x \rangle} = \mathbb{E}_{v \in \mathbb{F}_p^k} \omega^{P(y, v) + \langle v, -\psi(y) - x \rangle}
$$

Define
$$
\tilde{\phi} = \phi - \psi
$$
, $P(y_1, \ldots, y_n, v_1, \ldots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.

$$
\omega^{P(y,v)} = \sum_{\alpha \in \mathbb{F}_p^s} \widehat{f}(\alpha) \omega^{Q_{\alpha}(y) + \langle v, \gamma_{\alpha}(y) \rangle}
$$

 $deg(\gamma_\alpha(y)) < d$

$$
\mathbf{1}[\phi(y) = x] = \mathbb{E}_{v \in \mathbb{F}_p^k} \omega^{\langle v, \phi(y) - x \rangle}
$$

$$
= \mathbb{E}_{v \in \mathbb{F}_p^k} \omega^{\langle v, \phi(y) - x \rangle} = \mathbb{E}_{v \in \mathbb{F}_p^k} \omega^{P(y, v) + \langle v, -\psi(y) - x \rangle}
$$

$$
= \sum_{\alpha \in \mathbb{F}_p^s} \widehat{f}(\alpha) \omega^{\mathcal{Q}_\alpha(y)} \mathbb{E}_{v \in \mathbb{F}_p^k} \omega^{\langle v, (\gamma_\alpha - \psi)(y) \rangle}
$$

Define
$$
\tilde{\phi} = \phi - \psi
$$
, $P(y_1, \ldots, y_n, v_1, \ldots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.

$$
\Pr[\phi(E(x) + Z) = x] = \mathbb{E}_{x,Z} \mathbf{1}[\phi(E(x) + Z) = x]
$$

$$
= \mathbb{E}_{x,Z} \sum_{\alpha \in \mathbb{F}_p^s} \widehat{f}(\alpha) \omega^{Q_{\alpha}(y)} \mathbb{E}_{v \in \mathbb{F}_p^k} \omega^{\langle v, (\gamma_{\alpha} - \psi)(E(x) + Z) \rangle}
$$

Define
$$
\tilde{\phi} = \phi - \psi
$$
, $P(y_1, \ldots, y_n, v_1, \ldots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.

$$
\Pr[\phi(E(x) + Z) = x] \le
$$

$$
\sum_{\alpha \in \mathbb{F}_p^s} (\widehat{f}(\alpha) | \mathbb{E}_{x, Z} | \omega^{Q_{\alpha}(y)} \mathbb{E}_{v \in \mathbb{F}_p^k} \omega^{\langle v, (\gamma_{\alpha} - \psi)(E(x) + Z) \rangle})
$$

Define
$$
\tilde{\phi} = \phi - \psi
$$
, $P(y_1, \ldots, y_n, v_1, \ldots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.

$$
\Pr[\phi(E(x) + Z) = x] \le
$$

$$
\left(\sum_{\alpha \in \mathbb{F}_p^s} |\widehat{f}(\alpha)|\right) \max_{\alpha \in \mathbb{F}_p^s} \mathbb{E}_{x, Z} \left| \omega^{Q_{\alpha}(y)} \mathbb{E}_{v \in \mathbb{F}_p^k} \omega^{\langle v, (\gamma_{\alpha} - \psi)(E(x) + Z) \rangle} \right|
$$

Define
$$
\tilde{\phi} = \phi - \psi
$$
, $P(y_1, \ldots, y_n, v_1, \ldots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.

$$
\Pr[\phi(E(x) + Z) = x] \le
$$

$$
p^{s/2} \max_{\alpha \in \mathbb{F}_p^s} \mathbb{E}_{x, Z} \left| \omega^{Q_{\alpha}(y)} \mathbb{E}_{v \in \mathbb{F}_p^k} \omega^{\langle v, (\gamma_{\alpha} - \psi)(E(x) + Z) \rangle} \right|
$$

Define
$$
\tilde{\phi} = \phi - \psi
$$
, $P(y_1, \ldots, y_n, v_1, \ldots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.

$$
\Pr[\phi(E(x) + Z) = x] \le
$$

$$
p^{s/2} \max_{\alpha \in \mathbb{F}_p^s} \mathbb{E}_{x, Z} \mathbf{1}[(\gamma_\alpha - \psi)(E(x) + Z) = x]
$$

Define
$$
\tilde{\phi} = \phi - \psi
$$
, $P(y_1, \ldots, y_n, v_1, \ldots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.

 $deg(\gamma_\alpha(\psi)) < d$

$$
\Pr[\phi(E(x) + Z) = x] \le
$$

$$
p^{s/2} \max_{\alpha \in \mathbb{F}_p^s} \Pr[(\gamma_\alpha - \psi)(E(x) + Z) = x]
$$

$$
\le \epsilon
$$

We're now looking at $(\gamma_{\alpha} - \psi)$, which is a polynomial of degree *d* − 1 – by the induction hypothesis, beyond some *k* the above will always hold.

MAIN THEOREM PROOF OUTLINE

\blacktriangleright If high analytic rank:

- \blacktriangleright suffices to show equidistribution of $\phi(Z)$
- ▶ can be thought of in terms of rank of the restriction; arank is natural so we apply the theorem from the other paper

\blacktriangleright If low analytic rank:

- ▶ Equivalent to saying a related polynomial has high bias
- ▶ Functions with high bias have some coherent structure in terms of their derivatives
- ▶ Exploiting that structure and doing some Fourier analysis, can write the claim in terms of a lower-degree instance
- $\blacktriangleright \implies$ win by induction

CORE PROPERTY

Definition

A notion of rank satisfies the (*A*, *B*)**-core property** if, for every (sufficiently high-rank) *d*-tensor *T*, there exist $J_1, \ldots, J_d \subset$ of size at most $A(\text{rk}(T))$ such that $\text{rk}(T|_{J_{\text{def}}}\geq B(\text{rk}(T)).$

CORE PROPERTY

Definition

A notion of rank satisfies the (*A*, *B*)**-core property** if, for every (sufficiently high-rank) *d*-tensor *T*, there exist $J_1, \ldots, J_d \subset$ of size at most $A(\text{rk}(T))$ such that $\text{rk}(T|_{J_{\text{def}}}\geq B(\text{rk}(T)).$

Definition

rk satisfies the **linear core property** if *A* and *B* are linear functions.

MATRIX RANK SATISFIES CORE PROPERTY

For matrix rank, we can set both *A* and *B* to be $x \mapsto x$ (perfect linear core property).

Theorem

If a natural rank rk *satisfies the linear core property, for every* σ *there exist* $C, \kappa > 0$ *such that, for every d-tensor* T *,*

$$
\Pr_{I \sim [n_1]_\sigma, \dots, I_d \sim [n_d]_\sigma}[\text{rk}(T_{|I_{[d]}}) > \kappa \text{rk}(T)] \ge 1 - Ce^{-\kappa \text{rk}(T)}.
$$

Theorem

If a natural rank rk *satisfies the linear core property, for every* σ *there exist* $C, \kappa > 0$ *such that, for every d-tensor* T,

$$
\Pr_{I \sim [n_1]_\sigma, \dots, I_d \sim [n_d]_\sigma}[\text{rk}(T_{|I_{[d]}}) > \kappa \text{rk}(T)] \ge 1 - Ce^{-\kappa \text{rk}(T)}.
$$

Proof: Fix some sets J_1, \ldots, J_d of size $a \text{ rk}(T)$ such that $rk(T_{\text{I}_{\text{Id}}}\geq b \, rk(T)$. Choose $\lambda = b/(3da)$. By Chernoff bound, if we do a $(1 - \lambda)$ -restriction, w.h.p. all *J*_{*j*}s have at least $(1 - 2\lambda)$ fraction remaining.

Theorem

If a natural rank rk *satisfies the linear core property, for every* σ *there exist* $C, \kappa > 0$ *such that, for every d-tensor* T,

$$
\Pr_{I \sim [n_1]_\sigma, \dots, I_d \sim [n_d]_\sigma} [\text{rk}(T_{|I_{[d]}}) > \kappa \text{rk}(T)] \ge 1 - Ce^{-\kappa \text{rk}(T)}
$$

.

Proof: Fix some sets J_1, \ldots, J_d of size a rk(*T*) such that $rk(T_{J_{\text{f}}d} \geq b \, rk(T)$. Choose $\lambda = b/(3da)$. By Chernoff bound, if we do a $(1 - \lambda)$ -restriction, w.h.p. all *J*_{*i*}s have at least $(1 - 2\lambda)$ fraction remaining.

$$
\Pr_{I \sim [n_1]_{1-\lambda}, \ldots, I_d \sim [n_d]_{1-\lambda}} [\mathrm{rk}(T_{|I_{[d]}}) \geq \frac{c}{3} \mathrm{rk}(T)] \geq 1 - Ce^{-\kappa \mathrm{rk}(T)}.
$$

Theorem

If a natural rank rk *satisfies the linear core property, for every* σ *there exist* $C, \kappa > 0$ *such that, for every d-tensor* T *,*

$$
\Pr_{I \sim [n_1]_{\sigma}, \dots, I_d \sim [n_d]_{\sigma}}[\text{rk}(T_{|I_{[d]}}) > \kappa \text{rk}(T)] \ge 1 - Ce^{-\kappa \text{rk}(T)}.
$$

$$
\Pr_{I \sim [n_1]_{1-\lambda}, \dots, I_d \sim [n_d]_{1-\lambda}} [\text{rk}(T_{|I_{[d]}}) \ge \frac{c}{3} \text{rk}(T)] \ge 1 - Ce^{-\kappa \text{rk}(T)}.
$$
 Now, just iterate this argument *t* times until $(1 - \lambda)^t < \sigma$.

CONCLUSION / LINGERING QUESTIONS