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Theorem
For any d and σ, there are constants C, κ such that for any natural
rank function rk and any d-tensor T,

Pr
I1∼[n1]σ ,...,Id∼[nd]σ

[rk(T|I[d] ≥ κ rk(T)] ≥ 1− Ce−κ rk(T)



A RECAP OF THE STORY

Theorem
For any d, σ, and ϵ, there’s a constant κ such that for any natural
rank function rk and any degree-d polynomial ϕ,

Pr
I∼[n]σ

[rk(ϕ|I ≥ κ rk(T)] ≥ 1− ϵ



ERROR-CORRECTION CODE APPLICATION
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WHAT ARE ERROR-CORRECTING CODES?
Error model:

Nρ =

{
0 with probability ρ
random field element with probability 1− ρ
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WHAT ARE ERROR-CORRECTING CODES?



WHAT ARE ERROR-CORRECTING CODES?



EXAMPLE: WALSH-HADAMARD CODE

WH : {0, 1}n → {0, 1}2n

WH(x)i = ⟨x, i⟩
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WHAT IS NC0[⊕]?



[BBCSN22] MAIN THEOREM

Theorem
For any p, d ∈ N, ρ, ϵ ∈ (0, 1) there exists k0(p, d, ρ, ϵ) such that, for
any integers k ≥ k0, n, any function (i.e. error-correcting code)
E : Fk

p → Fn
p , and any degree-d polynomial (i.e. NC0[⊕] circuit) ϕ,

Pr
x∈Fk

p, Z∼Nρ

[ϕ(E(x) + Z) = x] ≤ ϵ.



INTUITION

Goal: Prx∈Fk
p, Z∼Nρ

[ϕ(E(x) + Z) = x] ≤ ϵ.



INTUITION

Goal: Prx∈Fk
p, Z∼Nρ

[ϕ(E(x) + Z) = x] ≤ ϵ.

Idea: either ϕ has small rank (in which case the output space
will be too small to hit most x), or ϕ has large rank (in which

case it’s too sensitive to the errors).



INTUITION: LINEAR CASE

Goal: Prx∈Fk
p, Z∼Nρ

[U(E(x) + Z) + v = x] ≤ ϵ.

▶ Suppose ϕ is degree-1; i.e., can be written as y 7→ Uy + v.



INTUITION: LINEAR CASE

Goal: Prx∈Fk
p, Z∼Nρ

[U(E(x) + Z) + v = x] ≤ ϵ.

▶ Suppose ϕ is degree-1; i.e., can be written as y 7→ Uy + v.
▶ If rk(U) ≤ k/2, im(U + v) is affine space of size at most

pk/2, so decoding probability ≤ pk/2/pk = p−k/2.



INTUITION: LINEAR CASE

Goal: Prx∈Fk
p, Z∼Nρ

[U(E(x) + Z) + v = x] ≤ ϵ.

▶ Suppose rk(U) > k/2. Note it suffices to bound
PrZ∼Nρ [UZ = x− v−UE(x)] for every fixed x.



INTUITION: LINEAR CASE

Goal: PrZ∼Nρ [UZ = x− v−UE(x)] ≤ 2−Ω(k)

▶ Suppose rk(U) > k/2.
▶ To choose Z, first choose corrupted indices, then set values.

Equivalently, first take random restriction of U, then feed
random input.



INTUITION: LINEAR CASE

Goal: PrZ∼Nρ [UZ = x− v−UE(x)] ≤ 2−Ω(k)

▶ Suppose rk(U) > k/2.
▶ To choose Z, first choose corrupted indices, then set values.

Equivalently, first take random restriction of U, then feed
random input.

▶ w.h.p. random restriction has rank at least (1− ρ)k/4, so
probability of being in the kernel is less than p−(1−ρ)k/4.



ANALYTIC RANK FOR DEGREE-d POLYNOMIALS

Definition

arankd(ϕ) = − logp

(
max

ψ:Fn
p→Fk

p, deg(ψ)≤d−1
Pr[ϕ(x) = ψ(x)]

)

(why same if linear?)



ANALYTIC RANK FOR DEGREE-d POLYNOMIALS

Definition

arankd(ϕ) = − logp

(
max

ψ:Fn
p→Fk

p, deg(ψ)≤d−1
Pr[ϕ(x) = ψ(x)]

)

Equivalently,

arankd(ϕ) = min
ψ:Fn

p→Fk
p, deg(ψ)≤d−1

− logp Ev∈Fk
p, x∈Fn

p
ω⟨v,ϕ(x)−ψ(x)⟩.



MAIN THEOREM PROOF OUTLINE

▶ If high analytic rank:
▶ suffices to show equidistribution of ϕ(Z)
▶ can be thought of in terms of rank of the restriction; arank

is natural so we apply the theorem from the other paper
▶ If low analytic rank:

▶ Equivalent to saying a related polynomial has high bias
▶ Functions with high bias have some coherent structure in

terms of their derivatives
▶ Exploiting that structure and doing some Fourier analysis,

can write the claim in terms of a lower-degree instance
▶ =⇒ win by induction



SOME TERMINOLOGY

Definition
Letting ω = e2iπ/p, for a function f : Fn

p → Fp, we define

bias(f ) = |Ex∈Fn
pω

f (x)|



SOME TERMINOLOGY

Definition
Letting ω = e2iπ/p, for a function f : Fn

p → Fp, we define

bias(f ) = |Ex∈Fn
pω

f (x)|

Definition
For a polynomial P ∈ Fp[x1, . . . , xn] and a vector h ∈ Fn

p , we
define the “derivative”

∆hP(x) = P(x + h)− P(x)



DERIVATIVE FACT 1

bias(f ) = |Ex∈Fn
pω

f (x)|

∆hP(x) = P(x + h)− P(x)

Fact
For any P, h, we always have

deg(∆hP) < deg(P).



DERIVATIVE FACT 2

bias(f ) = |Ex∈Fn
pω

f (x)|

∆hP(x) = P(x + h)− P(x)

Theorem (Kaufman, Lovett)

There exists s(p, d, ϵ) such that, if P ∈ Fp[x1, . . . , xn] has degree at
most d and bias at least ϵ, then there exist h1, . . . , hr ∈ Fn

p ,
Γ : Fs

p → Fp, such that

P(x) ≡ Γ
(
∆h1P(x), . . . ,∆hsP(x)

)



MAIN THEOREM PROOF OUTLINE

▶ If high analytic rank:
▶ suffices to show equidistribution of ϕ(Z)
▶ can be thought of in terms of rank of the restriction; arank

is natural so we apply the theorem from the other paper
▶ If low analytic rank:

▶ Equivalent to saying a related polynomial has high bias
▶ Functions with high bias have some coherent structure in

terms of their derivatives
▶ Exploiting that structure and doing some Fourier analysis,

can write the claim in terms of a lower-degree instance
▶ =⇒ win by induction



HIGH ANALYTIC RANK

Lemma
There exists R(d, ρ, ϵ) such that, if deg(ϕ) ≤ d and arankd(ϕ) ≥ R,

Pr
Z∼Np

[ϕ(y + Z) = w] ≤ ϵ for all y ∈ Fn
p ,w ∈ Fk

p.



HIGH ANALYTIC RANK

Lemma
There exists R(d, ρ, ϵ) such that, if deg(ϕ) ≤ d and arankd(ϕ) ≥ R,

Pr
Z∼Np

[ϕ(y + Z) = w] ≤ ϵ for all y ∈ Fn
p ,w ∈ Fk

p.

Proof:
▶ Since x 7→ ϕ(y + x)− w has the same degree and analytic

rank as ϕ, wlog y = w = 0.



HIGH ANALYTIC RANK

Lemma
There exists R(d, ρ, ϵ) such that, if deg(ϕ) ≤ d and arankd(ϕ) ≥ R,

Pr
Z∼Np

[ϕ(y + Z) = w] ≤ ϵ for all y ∈ Fn
p ,w ∈ Fk

p.

Proof:
▶ GOAL: PrZ∼Np [ϕ(Z) = 0] ≤ ϵ.
▶ First, sample I ∼ [n]1−ρ to be the corrupted coordinates,

then choose the noise values.



HIGH ANALYTIC RANK

Lemma
There exists R(d, ρ, ϵ) such that, if deg(ϕ) ≤ d and arankd(ϕ) ≥ R,

Pr
Z∼Np

[ϕ(y + Z) = w] ≤ ϵ for all y ∈ Fn
p ,w ∈ Fk

p.

Proof:
▶ GOAL: PrZ∼Np [ϕ(Z) = 0] ≤ ϵ.
▶ First, sample I ∼ [n]1−ρ, then choose the noise.
▶ Equivalently, randomly restrict ϕ, then give random input.



HIGH ANALYTIC RANK

Lemma
There exists R(d, ρ, ϵ) such that, if deg(ϕ) ≤ d and arankd(ϕ) ≥ R,

Pr
Z∼Np

[ϕ(y + Z) = w] ≤ ϵ for all y ∈ Fn
p ,w ∈ Fk

p.

Proof:
▶ GOAL: EI∼[n]1−ρ

Prz∈FI
p
[ϕ|I(z) = 0] ≤ ϵ.

▶ Since the 0 polynomial has degree < d,

EI∼[n]1−ρ
Pr

z∈FI
p

[ϕ|I(z) = 0] ≤ EI∼[n]1−ρ
p− arankd(ϕ|I



HIGH ANALYTIC RANK

Lemma
There exists R(d, ρ, ϵ) such that, if deg(ϕ) ≤ d and arankd(ϕ) ≥ R,

Pr
Z∼Np

[ϕ(y + Z) = w] ≤ ϵ for all y ∈ Fn
p ,w ∈ Fk

p.

Proof:
▶ GOAL: EI∼[n]1−ρ

p− arankd(ϕ|I ≤ ϵ.
▶ Now, if we knew that analytic rank was natural, we could

just apply the random restriction theorem.



ANALYTIC RANK IS NATURAL

▶ Symmetry
▶ Sub-additivity
▶ Monotonicity under restrictions
▶ Lipschitz



MAIN THEOREM PROOF OUTLINE

▶ If high analytic rank:
▶ suffices to show equidistribution of ϕ(Z)
▶ can be thought of in terms of rank of the restriction; arank

is natural so we apply the theorem from the other paper
▶ If low analytic rank:

▶ Equivalent to saying a related polynomial has high bias
▶ Functions with high bias have some coherent structure in

terms of their derivatives
▶ Exploiting that structure and doing some Fourier analysis,

can write the claim in terms of a lower-degree instance
▶ =⇒ win by induction



SMALL ANALYTIC RANK

Given: deg(ϕ) ≤ d, arank(ϕ) < R
Goal: Prx∈Fk

p, Z∼Nρ
[ϕ(E(x) + Z) = x] ≤ ϵ.

arank(ϕ) < R

is equivalent to

∃ψ,deg(ψ) ≤ d− 1, Pr
x∈Fn

p
[ϕ(x) = ψ(x)] ≥ p−R.



SMALL ANALYTIC RANK

Given: deg(ϕ) ≤ d, deg(ψ) ≤ d− 1
Prx∈Fn

p [ϕ(x) = ψ(x)] ≥ p−R.

Goal: Prx∈Fk
p, Z∼Nρ

[ϕ(E(x) + Z) = x] ≤ ϵ.

Define ϕ̃ = ϕ− ψ, P(y1, . . . , yn, v1, . . . , vk) = ⟨v, ϕ̃(y)⟩.
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Given: deg(ϕ) ≤ d, deg(ψ) ≤ d− 1
Prx∈Fn

p [ϕ(x) = ψ(x)] ≥ p−R.

Goal: Prx∈Fk
p, Z∼Nρ

[ϕ(E(x) + Z) = x] ≤ ϵ.

Define ϕ̃ = ϕ− ψ, P(y1, . . . , yn, v1, . . . , vk) = ⟨v, ϕ̃(y)⟩.

We have bias(P) = Ey Ev ω
⟨v,ϕ̃(y)⟩ = Pr[ϕ̃(y) = 0] ≥ p−R.



SMALL ANALYTIC RANK

Define ϕ̃ = ϕ− ψ, P(y1, . . . , yn, v1, . . . , vk) = ⟨v, ϕ̃(y)⟩.

We have bias(P) = Ey Ev ω
⟨v,ϕ̃(y)⟩ = Pr[ϕ̃(y) = 0] ≥ p−R.

By Kaufman-Lovett, there exist s, (h1,w1), . . . , (hs,ws), Γ such
that

P(y, v) = Γ(∆(h1,w1)P(y, v), . . . ,∆(hs,ws)P(y, v)).



SMALL ANALYTIC RANK

Define ϕ̃ = ϕ− ψ, P(y1, . . . , yn, v1, . . . , vk) = ⟨v, ϕ̃(y)⟩.
P(y, v) = Γ(∆(h1,w1)P(y, v), . . . ,∆(hs,ws)P(y, v)).

∆(h,w)P(y, v) = P(y + h, v + w)− P(y, v)

= P(y + h,w) + P(y + h, v)− P(y, v)

= ⟨w, ϕ̃(y + h)⟩+ ⟨v,∆hϕ̃(y)⟩



SMALL ANALYTIC RANK

Define ϕ̃ = ϕ− ψ, P(y1, . . . , yn, v1, . . . , vk) = ⟨v, ϕ̃(y)⟩.
P(y, v) = Γ(∆(h1,w1)P(y, v), . . . ,∆(hs,ws)P(y, v)).

∆(h,w)P(y, v) = P(y + h, v + w)− P(y, v)

= P(y + h,w) + P(y + h, v)− P(y, v)

= ⟨w, ϕ̃(y + h)⟩+ ⟨v,∆hϕ̃(y)⟩



SMALL ANALYTIC RANK

Define ϕ̃ = ϕ− ψ, P(y1, . . . , yn, v1, . . . , vk) = ⟨v, ϕ̃(y)⟩.

P(y, v) = Γ

((
⟨w1, ϕ̃(y + h1)⟩+ ⟨v,∆h1 ϕ̃(y)⟩

)
P(y, v),

. . . ,
(
⟨ws, ϕ̃(y + hs)⟩+ ⟨v,∆h1 ϕ̃(y)⟩

)
P(y, v)

)
.

Letting f (x) = ωΓ(x) and applying Fourier inversion,

ωP(y,v) = f (P(y, v)) =
∑
α∈Fs

p

f̂ (α)ω⟨α,... ⟩ =
∑
α∈Fs

p

f̂ (α)ωQα(y)+⟨v,γα(y)⟩

Where we define

Qα(y) =
s∑

i=1

⟨αiwi, ϕ̃(y + hi)⟩,

γα(y) =
s∑

i=1

αi∆hi ϕ̃(y).



SMALL ANALYTIC RANK

Define ϕ̃ = ϕ− ψ, P(y1, . . . , yn, v1, . . . , vk) = ⟨v, ϕ̃(y)⟩.

P(y, v) = Γ

((
⟨w1, ϕ̃(y + h1)⟩+ ⟨v,∆h1 ϕ̃(y)⟩

)
P(y, v),

. . . ,
(
⟨ws, ϕ̃(y + hs)⟩+ ⟨v,∆h1 ϕ̃(y)⟩

)
P(y, v)

)
.

Letting f (x) = ωx and applying Fourier inversion,

ωP(y,v) = f (P(y, v)) =
∑
α∈Fs

p

f̂ (α)ω⟨α,... ⟩ =
∑
α∈Fs

p

f̂ (α)ωQα(y)+⟨v,γα(y)⟩

Where we define

Qα(y) =
s∑

i=1

⟨αiwi, ϕ̃(y + hi)⟩,

γα(y) =
s∑

i=1

αi∆hi ϕ̃(y).← deg < d



SMALL ANALYTIC RANK

Define ϕ̃ = ϕ− ψ, P(y1, . . . , yn, v1, . . . , vk) = ⟨v, ϕ̃(y)⟩.

ωP(y,v) =
∑
α∈Fs

p

f̂ (α)ωQα(y)+⟨v,γα(y)⟩

deg(γα(y)) < d

Now, note that

1[ϕ(y) = x] = Ev∈Fk
p
ω⟨v,ϕ(y)−x⟩
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SMALL ANALYTIC RANK

Define ϕ̃ = ϕ− ψ, P(y1, . . . , yn, v1, . . . , vk) = ⟨v, ϕ̃(y)⟩.

ωP(y,v) =
∑
α∈Fs

p

f̂ (α)ωQα(y)+⟨v,γα(y)⟩

deg(γα(y)) < d

Now, note that

1[ϕ(y) = x] = Ev∈Fk
p
ω⟨v,ϕ(y)−x⟩

= Ev∈Fk
p
ω⟨v,ϕ(y)−x⟩ = Ev∈Fk

p
ωP(y,v)+⟨v,−ψ(y)−x⟩



SMALL ANALYTIC RANK

Define ϕ̃ = ϕ− ψ, P(y1, . . . , yn, v1, . . . , vk) = ⟨v, ϕ̃(y)⟩.

ωP(y,v) =
∑
α∈Fs

p

f̂ (α)ωQα(y)+⟨v,γα(y)⟩

deg(γα(y)) < d

Now, note that

1[ϕ(y) = x] = Ev∈Fk
p
ω⟨v,ϕ(y)−x⟩

= Ev∈Fk
p
ω⟨v,ϕ(y)−x⟩ = Ev∈Fk

p
ωP(y,v)+⟨v,−ψ(y)−x⟩

=
∑
α∈Fs

p

f̂ (α)ωQα(y) Ev∈Fk
p
ω⟨v,(γα−ψ)(y)⟩



SMALL ANALYTIC RANK

Define ϕ̃ = ϕ− ψ, P(y1, . . . , yn, v1, . . . , vk) = ⟨v, ϕ̃(y)⟩.

deg(γα(y)) < d

Pr[ϕ(E(x) + Z) = x] = Ex,Z 1[ϕ(E(x) + Z) = x]

= Ex,Z
∑
α∈Fs

p

f̂ (α)ωQα(y) Ev∈Fk
p
ω⟨v,(γα−ψ)(E(x)+Z)⟩



SMALL ANALYTIC RANK

Define ϕ̃ = ϕ− ψ, P(y1, . . . , yn, v1, . . . , vk) = ⟨v, ϕ̃(y)⟩.

deg(γα(y)) < d

Pr[ϕ(E(x) + Z) = x] ≤∑
α∈Fs

p

(
|̂f (α)|Ex,Z

∣∣∣ωQα(y) Ev∈Fk
p
ω⟨v,(γα−ψ)(E(x)+Z)⟩

∣∣∣)



SMALL ANALYTIC RANK

Define ϕ̃ = ϕ− ψ, P(y1, . . . , yn, v1, . . . , vk) = ⟨v, ϕ̃(y)⟩.

deg(γα(y)) < d

Pr[ϕ(E(x) + Z) = x] ≤∑
α∈Fs

p

|̂f (α)|

max
α∈Fs

p
Ex,Z

∣∣∣ωQα(y) Ev∈Fk
p
ω⟨v,(γα−ψ)(E(x)+Z)⟩

∣∣∣



SMALL ANALYTIC RANK

Define ϕ̃ = ϕ− ψ, P(y1, . . . , yn, v1, . . . , vk) = ⟨v, ϕ̃(y)⟩.

deg(γα(y)) < d

Pr[ϕ(E(x) + Z) = x] ≤

ps/2 max
α∈Fs

p
Ex,Z

∣∣∣ωQα(y) Ev∈Fk
p
ω⟨v,(γα−ψ)(E(x)+Z)⟩

∣∣∣



SMALL ANALYTIC RANK

Define ϕ̃ = ϕ− ψ, P(y1, . . . , yn, v1, . . . , vk) = ⟨v, ϕ̃(y)⟩.

deg(γα(y)) < d

Pr[ϕ(E(x) + Z) = x] ≤

ps/2 max
α∈Fs

p
Ex,Z 1[(γα − ψ)(E(x) + Z) = x]



SMALL ANALYTIC RANK

Define ϕ̃ = ϕ− ψ, P(y1, . . . , yn, v1, . . . , vk) = ⟨v, ϕ̃(y)⟩.

deg(γα(y)) < d

Pr[ϕ(E(x) + Z) = x] ≤

ps/2 max
α∈Fs

p
Pr[(γα − ψ)(E(x) + Z) = x]

≤ ϵ

We’re now looking at (γα − ψ), which is a polynomial of degree
d− 1 – by the induction hypothesis, beyond some k the above
will always hold.



MAIN THEOREM PROOF OUTLINE

▶ If high analytic rank:
▶ suffices to show equidistribution of ϕ(Z)
▶ can be thought of in terms of rank of the restriction; arank

is natural so we apply the theorem from the other paper
▶ If low analytic rank:

▶ Equivalent to saying a related polynomial has high bias
▶ Functions with high bias have some coherent structure in

terms of their derivatives
▶ Exploiting that structure and doing some Fourier analysis,

can write the claim in terms of a lower-degree instance
▶ =⇒ win by induction



CORE PROPERTY

Definition
A notion of rank satisfies the (A,B)-core property if, for every
(sufficiently high-rank) d-tensor T, there exist J1, . . . , Jd ⊂ of size
at most A(rk(T)) such that rk(T|J[d] ≥ B(rk(T)).



CORE PROPERTY

Definition
A notion of rank satisfies the (A,B)-core property if, for every
(sufficiently high-rank) d-tensor T, there exist J1, . . . , Jd ⊂ of size
at most A(rk(T)) such that rk(T|J[d] ≥ B(rk(T)).

Definition
rk satisfies the linear core property if A and B are linear
functions.



MATRIX RANK SATISFIES CORE PROPERTY

For matrix rank, we can set both A and B to be x 7→ x (perfect
linear core property).



WHY LINEAR CORE PROPERTY IS STRONG

Theorem
If a natural rank rk satisfies the linear core property, for every σ there
exist C, κ > 0 such that, for every d-tensor T,

Pr
I∼[n1]σ ,...,Id∼[nd]σ

[rk(T|I[d]) > κ rk(T)] ≥ 1− Ce−κ rk(T).



WHY LINEAR CORE PROPERTY IS STRONG

Theorem
If a natural rank rk satisfies the linear core property, for every σ there
exist C, κ > 0 such that, for every d-tensor T,

Pr
I∼[n1]σ ,...,Id∼[nd]σ

[rk(T|I[d]) > κ rk(T)] ≥ 1− Ce−κ rk(T).

Proof: Fix some sets J1, . . . , Jd of size a rk(T) such that
rk(TJ[d] ≥ b rk(T). Choose λ = b/(3da). By Chernoff bound, if
we do a (1− λ)-restriction, w.h.p. all Jis have at least (1− 2λ)
fraction remaining.



WHY LINEAR CORE PROPERTY IS STRONG

Theorem
If a natural rank rk satisfies the linear core property, for every σ there
exist C, κ > 0 such that, for every d-tensor T,

Pr
I∼[n1]σ ,...,Id∼[nd]σ

[rk(T|I[d]) > κ rk(T)] ≥ 1− Ce−κ rk(T).

Proof: Fix some sets J1, . . . , Jd of size a rk(T) such that
rk(TJ[d] ≥ b rk(T). Choose λ = b/(3da). By Chernoff bound, if
we do a (1− λ)-restriction, w.h.p. all Jis have at least (1− 2λ)
fraction remaining.

Pr
I∼[n1]1−λ,...,Id∼[nd]1−λ

[rk(T|I[d]) ≥
c
3
rk(T)] ≥ 1− Ce−κ rk(T).



WHY LINEAR CORE PROPERTY IS STRONG

Theorem
If a natural rank rk satisfies the linear core property, for every σ there
exist C, κ > 0 such that, for every d-tensor T,

Pr
I∼[n1]σ ,...,Id∼[nd]σ

[rk(T|I[d]) > κ rk(T)] ≥ 1− Ce−κ rk(T).

Pr
I∼[n1]1−λ,...,Id∼[nd]1−λ

[rk(T|I[d]) ≥
c
3
rk(T)] ≥ 1− Ce−κ rk(T).

Now, just iterate this argument t times until (1− λ)t < σ.



CONCLUSION / LINGERING QUESTIONS


