Discussion: Error-Correcting Codes and the Core Property

Nathan

2023

A RECAP OF THE STORY

A RECAP OF THE STORY

Theorem

For any *d* and σ , there are constants C, κ such that for any **natural** rank function rk and any *d*-tensor T,

$$\Pr_{I_1 \sim [n_1]_\sigma, \dots, I_d \sim [n_d]_\sigma} [\operatorname{rk}(T_{|I_{[d]}} \ge \kappa \operatorname{rk}(T)] \ge 1 - Ce^{-\kappa \operatorname{rk}(T)}$$

A RECAP OF THE STORY

Theorem

For any *d*, σ , and ϵ , there's a constant κ such that for any **natural** rank function rk and any degree-*d* polynomial ϕ ,

$$\Pr_{I_{\sim}[n]_{\sigma}}[\operatorname{rk}(\phi_{|I} \geq \kappa \operatorname{rk}(T)] \geq 1 - \epsilon$$

ERROR-CORRECTION CODE APPLICATION

NOISY DECODING BY SHALLOW CIRCUITS WITH PARITIES: CLASSICAL AND QUANTUM

JOP BRIËT, HARRY BUHRMAN, DAVI CASTRO-SILVA, AND NIELS M. P. NEUMANN

ABSTRACT. We consider the problem of decoding corrupted error correcting codes with NC⁰[\oplus] circuits in the classical and quantum settings. We show that any such classical circuit can correctly recover only a vanishingly small fraction of messages, if the codewords are sent over a noisy channel with positive error rate. Previously this was known only for linear codes with non-trivial dual distance, whereas our result applies to any code. By contrast, we give a simple quantum circuit that correctly decodes the Hadamard code with probability $\Omega(\varepsilon^2)$ even if a $(1/2 - \varepsilon)$ -fraction of a codeword is adversarially corrupted.

Our classical hardness result is based on an equidistribution phenomenon for multivariate polynomials over a finite field under biased inputdistributions. This is proved using a structure-versus-randomness strategy based on a new notion of rank for high-dimensional polynomial maps that may be of independent interest.

Our quantum circuit is inspired by a non-local version of the Bernstein-Vazirani problem, a technique to generate "poor man's cat states" by Watts et al., and a constant-depth quantum circuit for the OR function by Takahashi and Tani.

x = "hi bob! this is alice."

 $x + \mathcal{N} =$ "oi bwb! thipuis al36e."

 $E(x) + \mathcal{N} =$ "hwtbou! tris ps alici. ii 40bp ph?s is xlike. hi brb! thin iv aaiceq

 $D(E(x + \mathcal{N}) =$ "hi bob! this is alice."

Error model:

$$\mathcal{N}_{\rho} = \begin{cases} 0 \text{ with probability } \rho \\ \text{random field element with probability } 1 - \rho \end{cases}$$

WHAT ARE ERROR-CORRECTING CODES? Error model:

 $\mathcal{N}_{
ho} = egin{cases} 0 ext{ with probability }
ho \ ext{random field element with probability } 1 -
ho \end{cases}$

EXAMPLE: WALSH-HADAMARD CODE

WH : $\{0,1\}^n \to \{0,1\}^{2^n}$ WH $(x)_i = \langle x,i \rangle$

[BBCSN22] MAIN THEOREM

Theorem

For any $p, d \in \mathbb{N}$, $\rho, \epsilon \in (0, 1)$ there exists $k_0(p, d, \rho, \epsilon)$ such that, for any integers $k \ge k_0$, n, any function (i.e. error-correcting code) $E : \mathbb{F}_p^k \to \mathbb{F}_p^n$, and any degree-d polynomial (i.e. $\mathsf{NC}^0[\oplus]$ circuit) ϕ ,

$$\Pr_{x \in \mathbb{F}_p^k, \ Z \sim \mathcal{N}_\rho}[\phi(E(x) + Z) = x] \le \epsilon.$$

INTUITION

Goal:
$$\Pr_{x \in \mathbb{F}_p^k, Z \sim \mathcal{N}_\rho}[\phi(E(x) + Z) = x] \le \epsilon.$$

INTUITION

Goal:
$$\Pr_{x \in \mathbb{F}_p^k, Z \sim \mathcal{N}_p}[\phi(E(x) + Z) = x] \le \epsilon.$$

Idea: either ϕ has small rank (in which case the output space will be too small to hit most *x*), or ϕ has large rank (in which case it's too sensitive to the errors).

Goal:
$$\Pr_{x \in \mathbb{F}_p^k, Z \sim \mathcal{N}_\rho}[U(E(x) + Z) + v = x] \le \epsilon.$$

Suppose ϕ is degree-1; i.e., can be written as $y \mapsto Uy + v$.

Goal:
$$\Pr_{x \in \mathbb{F}_p^k, Z \sim \mathcal{N}_p}[U(E(x) + Z) + v = x] \le \epsilon.$$

- Suppose ϕ is degree-1; i.e., can be written as $y \mapsto Uy + v$.
- ▶ If $rk(U) \le k/2$, im(U + v) is affine space of size at most $p^{k/2}$, so decoding probability $\le p^{k/2}/p^k = p^{-k/2}$.

Goal:
$$\Pr_{x \in \mathbb{F}_p^k, Z \sim \mathcal{N}_p}[U(E(x) + Z) + v = x] \le \epsilon.$$

Suppose rk(U) > k/2. Note it suffices to bound Pr_{Z∼N_ρ}[UZ = x − v − UE(x)] for every fixed x.

Goal:
$$\Pr_{Z \sim \mathcal{N}_{\rho}}[UZ = x - v - UE(x)] \le 2^{-\Omega(k)}$$

- ► Suppose rk(U) > k/2.
- ► To choose *Z*, first choose corrupted indices, then set values. Equivalently, first take random restriction of *U*, then feed random input.

Goal:
$$\Pr_{Z \sim \mathcal{N}_{\rho}}[UZ = x - v - UE(x)] \le 2^{-\Omega(k)}$$

- Suppose $\operatorname{rk}(U) > k/2$.
- ► To choose *Z*, first choose corrupted indices, then set values. Equivalently, first take random restriction of *U*, then feed random input.
- ▶ w.h.p. random restriction has rank at least $(1 \rho)k/4$, so probability of being in the kernel is less than $p^{-(1-\rho)k/4}$.

ANALYTIC RANK FOR DEGREE-*d* POLYNOMIALS

Definition

$$\operatorname{arank}_{d}(\phi) = -\log_{p} \left(\max_{\psi: \mathbb{F}_{p}^{n} \to \mathbb{F}_{p}^{k}, \deg(\psi) \leq d-1} \Pr[\phi(x) = \psi(x)] \right)$$

(why same if linear?)

ANALYTIC RANK FOR DEGREE-*d* POLYNOMIALS

Definition

$$\operatorname{arank}_{d}(\phi) = -\log_{p} \left(\max_{\psi: \mathbb{F}_{p}^{n} \to \mathbb{F}_{p}^{k}, \deg(\psi) \leq d-1} \Pr[\phi(x) = \psi(x)] \right)$$

Equivalently,

$$\operatorname{arank}_{d}(\phi) = \min_{\psi: \mathbb{F}_{p}^{n} \to \mathbb{F}_{p}^{k}, \, \deg(\psi) \leq d-1} - \log_{p} \mathbb{E}_{v \in \mathbb{F}_{p}^{k}, \, x \in \mathbb{F}_{p}^{n}} \omega^{\langle v, \phi(x) - \psi(x) \rangle}$$

MAIN THEOREM PROOF OUTLINE

► If high analytic rank:

- suffices to show equidistribution of $\phi(Z)$
- can be thought of in terms of rank of the restriction; arank is natural so we apply the theorem from the other paper
- ► If low analytic rank:
 - Equivalent to saying a related polynomial has high bias
 - Functions with high bias have some coherent structure in terms of their derivatives
 - Exploiting that structure and doing some Fourier analysis, can write the claim in terms of a lower-degree instance
 - $\blacktriangleright \implies$ win by induction

Some Terminology

Definition

Letting $\omega = e^{2i\pi/p}$, for a function $f : \mathbb{F}_p^n \to \mathbb{F}_p$, we define

$$bias(f) = |\mathbb{E}_{x \in \mathbb{F}_p^n} \omega^{f(x)}|$$

Some Terminology

Definition

Letting $\omega = e^{2i\pi/p}$, for a function $f : \mathbb{F}_p^n \to \mathbb{F}_p$, we define

$$\operatorname{bias}(f) = |\mathbb{E}_{x \in \mathbb{F}_p^n} \omega^{f(x)}|$$

Definition

For a polynomial $P \in \mathbb{F}_p[x_1, ..., x_n]$ and a vector $h \in \mathbb{F}_p^n$, we define the "derivative"

$$\Delta_h P(x) = P(x+h) - P(x)$$

Derivative Fact 1

bias
$$(f) = |\mathbb{E}_{x \in \mathbb{F}_p^n} \omega^{f(x)}|$$

 $\Delta_h P(x) = P(x+h) - P(x)$

Fact

For any P, h, we always have

 $\deg(\Delta_h P) < \deg(P).$

DERIVATIVE FACT 2

bias
$$(f) = |\mathbb{E}_{x \in \mathbb{F}_p^n} \omega^{f(x)}|$$

 $\Delta_h P(x) = P(x+h) - P(x)$

Theorem (Kaufman, Lovett)

There exists $s(p, d, \epsilon)$ such that, if $P \in \mathbb{F}_p[x_1, \ldots, x_n]$ has degree at most d and bias at least ϵ , then there exist $h_1, \ldots, h_r \in \mathbb{F}_p^n$, $\Gamma : \mathbb{F}_p^s \to \mathbb{F}_p$, such that

$$P(x) \equiv \Gamma(\Delta_{h_1}P(x), \dots, \Delta_{h_s}P(x))$$

MAIN THEOREM PROOF OUTLINE

► If high analytic rank:

- suffices to show equidistribution of $\phi(Z)$
- can be thought of in terms of rank of the restriction; arank is natural so we apply the theorem from the other paper
- ► If low analytic rank:
 - Equivalent to saying a related polynomial has high bias
 - Functions with high bias have some coherent structure in terms of their derivatives
 - Exploiting that structure and doing some Fourier analysis, can write the claim in terms of a lower-degree instance
 - $\blacktriangleright \implies$ win by induction

Lemma

There exists $R(d, \rho, \epsilon)$ *such that, if* $deg(\phi) \leq d$ *and* $arank_d(\phi) \geq R$ *,*

$$\Pr_{Z \sim \mathcal{N}_p}[\phi(y + Z) = w] \le \epsilon \text{ for all } y \in \mathbb{F}_p^n, w \in \mathbb{F}_p^k.$$

Lemma

There exists $R(d, \rho, \epsilon)$ *such that, if* $deg(\phi) \leq d$ *and* $arank_d(\phi) \geq R$ *,*

$$\Pr_{Z \sim \mathcal{N}_p}[\phi(y + Z) = w] \le \epsilon \text{ for all } y \in \mathbb{F}_p^n, w \in \mathbb{F}_p^k.$$

Proof:

Since $x \mapsto \phi(y + x) - w$ has the same degree and analytic rank as ϕ , wlog y = w = 0.

Lemma

There exists $R(d, \rho, \epsilon)$ *such that, if* $deg(\phi) \leq d$ *and* $arank_d(\phi) \geq R$ *,*

$$\Pr_{Z \sim \mathcal{N}_{p}}[\phi(y + Z) = w] \le \epsilon \text{ for all } y \in \mathbb{F}_{p}^{n}, w \in \mathbb{F}_{p}^{k}.$$

- ► GOAL: $\Pr_{Z \sim \mathcal{N}_p}[\phi(Z) = 0] \le \epsilon$.
- ► First, sample *I* ~ [*n*]_{1-ρ} to be the corrupted coordinates, then choose the noise values.

Lemma

There exists $R(d, \rho, \epsilon)$ *such that, if* $deg(\phi) \leq d$ *and* $arank_d(\phi) \geq R$ *,*

$$\Pr_{Z \sim \mathcal{N}_{p}}[\phi(y + Z) = w] \le \epsilon \text{ for all } y \in \mathbb{F}_{p}^{n}, w \in \mathbb{F}_{p}^{k}.$$

- ► GOAL: $\Pr_{Z \sim \mathcal{N}_p}[\phi(Z) = 0] \le \epsilon$.
- First, sample $I \sim [n]_{1-\rho}$, then choose the noise.
- Equivalently, randomly restrict ϕ , then give random input.

Lemma

There exists $R(d, \rho, \epsilon)$ *such that, if* $deg(\phi) \leq d$ *and* $arank_d(\phi) \geq R$ *,*

$$\Pr_{Z \sim \mathcal{N}_p}[\phi(y + Z) = w] \le \epsilon \text{ for all } y \in \mathbb{F}_p^n, w \in \mathbb{F}_p^k.$$

- GOAL: $\mathbb{E}_{I \sim [n]_{1-\rho}} \operatorname{Pr}_{z \in \mathbb{F}_p^I}[\phi_{|I}(z) = 0] \leq \epsilon.$
- ► Since the 0 polynomial has degree < *d*,

$$\mathbb{E}_{I \sim [n]_{1-\rho}} \Pr_{z \in \mathbb{F}_p^I} [\phi_{|I}(z) = 0] \le \mathbb{E}_{I \sim [n]_{1-\rho}} p^{-\operatorname{arank}_d(\phi_{|I})}$$

Lemma

There exists $R(d, \rho, \epsilon)$ *such that, if* $deg(\phi) \leq d$ *and* $arank_d(\phi) \geq R$ *,*

$$\Pr_{Z \sim \mathcal{N}_{p}}[\phi(y + Z) = w] \le \epsilon \text{ for all } y \in \mathbb{F}_{p}^{n}, w \in \mathbb{F}_{p}^{k}.$$

- ► GOAL: $\mathbb{E}_{I \sim [n]_{1-\rho}} p^{-\operatorname{arank}_d(\phi_{|I}]} \leq \epsilon.$
- Now, if we knew that analytic rank was natural, we could just apply the random restriction theorem.

ANALYTIC RANK IS NATURAL

- ► Symmetry
- ► Sub-additivity
- Monotonicity under restrictions
- ► Lipschitz

MAIN THEOREM PROOF OUTLINE

► If high analytic rank:

- suffices to show equidistribution of $\phi(Z)$
- can be thought of in terms of rank of the restriction; arank is natural so we apply the theorem from the other paper

► If low analytic rank:

- Equivalent to saying a related polynomial has high bias
- Functions with high bias have some coherent structure in terms of their derivatives
- Exploiting that structure and doing some Fourier analysis, can write the claim in terms of a lower-degree instance
- $\blacktriangleright \implies$ win by induction

Given:
$$\deg(\phi) \le d$$
, $\operatorname{arank}(\phi) < R$
Goal: $\Pr_{x \in \mathbb{F}_p^k, Z \sim \mathcal{N}_\rho}[\phi(E(x) + Z) = x] \le \epsilon$.

 $\mathrm{arank}(\phi) < R$

is equivalent to

$$\exists \psi, \deg(\psi) \le d-1, \Pr_{x \in \mathbb{F}_p^m}[\phi(x) = \psi(x)] \ge p^{-R}.$$

Given:
$$\deg(\phi) \leq d$$
, $\deg(\psi) \leq d - 1$
 $\Pr_{x \in \mathbb{F}_p^n}[\phi(x) = \psi(x)] \geq p^{-R}$.
Goal: $\Pr_{x \in \mathbb{F}_p^k, Z \sim \mathcal{N}_\rho}[\phi(E(x) + Z) = x] \leq \epsilon$.

Define
$$\tilde{\phi} = \phi - \psi$$
, $P(y_1, \dots, y_n, v_1, \dots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.

Given:
$$\deg(\phi) \leq d$$
, $\deg(\psi) \leq d - 1$
 $\Pr_{x \in \mathbb{F}_p^n}[\phi(x) = \psi(x)] \geq p^{-R}$.
Goal: $\Pr_{x \in \mathbb{F}_p^k, Z \sim \mathcal{N}_\rho}[\phi(E(x) + Z) = x] \leq \epsilon$.

Define
$$\tilde{\phi} = \phi - \psi$$
, $P(y_1, \dots, y_n, v_1, \dots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.

We have $\operatorname{bias}(P) = \mathbb{E}_y \mathbb{E}_v \omega^{\langle v, \tilde{\phi}(y) \rangle} = \Pr[\tilde{\phi}(y) = 0] \ge p^{-R}.$

Define
$$\tilde{\phi} = \phi - \psi$$
, $P(y_1, \dots, y_n, v_1, \dots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.
We have $\operatorname{bias}(P) = \mathbb{E}_y \mathbb{E}_v \omega^{\langle v, \tilde{\phi}(y) \rangle} = \Pr[\tilde{\phi}(y) = 0] \ge p^{-R}$.

By Kaufman-Lovett, there exist *s*, $(h_1, w_1), \ldots, (h_s, w_s)$, Γ such that

$$P(y,v) = \Gamma(\Delta_{(h_1,w_1)}P(y,v),\ldots,\Delta_{(h_s,w_s)}P(y,v))$$

Define
$$\tilde{\phi} = \phi - \psi$$
, $P(y_1, \dots, y_n, v_1, \dots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.
 $P(y, v) = \Gamma(\Delta_{(h_1, w_1)} P(y, v), \dots, \Delta_{(h_s, w_s)} P(y, v))$.

$$\begin{split} \Delta_{(h,w)} P(y,v) &= P(y+h,v+w) - P(y,v) \\ &= P(y+h,w) + P(y+h,v) - P(y,v) \\ &= \langle w, \tilde{\phi}(y+h) \rangle + \langle v, \Delta_h \tilde{\phi}(y) \rangle \end{split}$$

Define
$$\tilde{\phi} = \phi - \psi$$
, $P(y_1, \dots, y_n, v_1, \dots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.
 $P(y, v) = \Gamma(\Delta_{(h_1, w_1)} P(y, v), \dots, \Delta_{(h_s, w_s)} P(y, v))$.

$$\begin{split} \Delta_{(h,w)} P(y,v) &= P(y+h,v+w) - P(y,v) \\ &= P(y+h,w) + P(y+h,v) - P(y,v) \\ &= \langle w, \tilde{\phi}(y+h) \rangle + \langle v, \Delta_h \tilde{\phi}(y) \rangle \end{split}$$

Define
$$\tilde{\phi} = \phi - \psi$$
, $P(y_1, \dots, y_n, v_1, \dots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.
 $P(y, v) = \Gamma \left(\left(\langle w_1, \tilde{\phi}(y + h_1) \rangle + \langle v, \Delta_{h_1} \tilde{\phi}(y) \rangle \right) P(y, v), \dots, \left(\langle w_s, \tilde{\phi}(y + h_s) \rangle + \langle v, \Delta_{h_1} \tilde{\phi}(y) \rangle \right) P(y, v) \right).$

Letting $f(x) = \omega^{\Gamma(x)}$ and applying Fourier inversion,

$$\omega^{P(y,v)} = f(P(y,v)) = \sum_{\alpha \in \mathbb{F}_p^s} \widehat{f}(\alpha) \omega^{\langle \alpha, \dots \rangle} = \sum_{\alpha \in \mathbb{F}_p^s} \widehat{f}(\alpha) \omega^{Q_\alpha(y) + \langle v, \gamma_\alpha(y) \rangle}$$

Where we define

$$egin{aligned} Q_lpha(y) &= \sum_{i=1}^s \langle lpha_i w_i, ilde{\phi}(y+h_i)
angle, \ \gamma_lpha(y) &= \sum_{i=1}^s lpha_i \Delta_{h_i} ilde{\phi}(y). \end{aligned}$$

Define
$$\tilde{\phi} = \phi - \psi$$
, $P(y_1, \dots, y_n, v_1, \dots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.
 $P(y, v) = \Gamma \left(\left(\langle w_1, \tilde{\phi}(y + h_1) \rangle + \langle v, \Delta_{h_1} \tilde{\phi}(y) \rangle \right) P(y, v), \dots, \left(\langle w_s, \tilde{\phi}(y + h_s) \rangle + \langle v, \Delta_{h_1} \tilde{\phi}(y) \rangle \right) P(y, v) \right).$

Letting $f(x) = \omega^x$ and applying Fourier inversion,

$$\omega^{P(y,v)} = f(P(y,v)) = \sum_{\alpha \in \mathbb{F}_p^s} \widehat{f}(\alpha) \omega^{\langle \alpha, \dots \rangle} = \sum_{\alpha \in \mathbb{F}_p^s} \widehat{f}(\alpha) \omega^{Q_\alpha(y) + \langle v, \gamma_\alpha(y) \rangle}$$

Where we define

$$Q_{\alpha}(y) = \sum_{i=1}^{s} \langle \alpha_{i} w_{i}, \tilde{\phi}(y+h_{i}) \rangle,$$
$$\gamma_{\alpha}(y) = \sum_{i=1}^{s} \alpha_{i} \Delta_{h_{i}} \tilde{\phi}(y). \leftarrow \deg < d$$

Define
$$\tilde{\phi} = \phi - \psi$$
, $P(y_1, \ldots, y_n, v_1, \ldots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.

$$\omega^{P(y,v)} = \sum_{\alpha \in \mathbb{F}_p^s} \widehat{f}(\alpha) \omega^{Q_\alpha(y) + \langle v, \gamma_\alpha(y) \rangle}$$

 $\deg(\gamma_\alpha(y)) < d$

$$\mathbf{1}[\phi(y) = x] = \mathbb{E}_{v \in \mathbb{F}_p^k} \, \omega^{\langle v, \phi(y) - x \rangle}$$

Define
$$\tilde{\phi} = \phi - \psi$$
, $P(y_1, \ldots, y_n, v_1, \ldots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.

$$\omega^{P(y,v)} = \sum_{\alpha \in \mathbb{F}_p^s} \widehat{f}(\alpha) \omega^{Q_\alpha(y) + \langle v, \gamma_\alpha(y) \rangle}$$

 $\deg(\gamma_\alpha(y)) < d$

$$\begin{split} \mathbf{1}[\phi(y) = x] &= \mathbb{E}_{v \in \mathbb{F}_p^k} \, \omega^{\langle v, \phi(y) - x \rangle} \\ &= \mathbb{E}_{v \in \mathbb{F}_p^k} \, \omega^{\langle v, \phi(y) - x \rangle} \end{split}$$

Define
$$\tilde{\phi} = \phi - \psi$$
, $P(y_1, \ldots, y_n, v_1, \ldots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.

$$\omega^{P(y,v)} = \sum_{\alpha \in \mathbb{F}_p^s} \widehat{f}(\alpha) \omega^{Q_\alpha(y) + \langle v, \gamma_\alpha(y) \rangle}$$

 $\deg(\gamma_\alpha(y)) < d$

$$\begin{split} \mathbf{1}[\phi(y) = x] &= \mathbb{E}_{v \in \mathbb{F}_p^k} \, \omega^{\langle v, \phi(y) - x \rangle} \\ &= \mathbb{E}_{v \in \mathbb{F}_p^k} \, \omega^{\langle v, \phi(y) - x \rangle} = \mathbb{E}_{v \in \mathbb{F}_p^k} \, \omega^{P(y, v) + \langle v, -\psi(y) - x \rangle} \end{split}$$

Define
$$\tilde{\phi} = \phi - \psi$$
, $P(y_1, \ldots, y_n, v_1, \ldots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.

$$\omega^{P(y,v)} = \sum_{\alpha \in \mathbb{F}_p^s} \widehat{f}(\alpha) \omega^{Q_\alpha(y) + \langle v, \gamma_\alpha(y) \rangle}$$

 $\deg(\gamma_\alpha(y)) < d$

$$\begin{split} \mathbf{1}[\phi(y) = x] &= \mathbb{E}_{v \in \mathbb{F}_p^k} \, \omega^{\langle v, \phi(y) - x \rangle} \\ &= \mathbb{E}_{v \in \mathbb{F}_p^k} \, \omega^{\langle v, \phi(y) - x \rangle} = \mathbb{E}_{v \in \mathbb{F}_p^k} \, \omega^{P(y, v) + \langle v, -\psi(y) - x \rangle} \\ &= \sum_{\alpha \in \mathbb{F}_p^k} \widehat{f}(\alpha) \omega^{Q_\alpha(y)} \, \mathbb{E}_{v \in \mathbb{F}_p^k} \, \omega^{\langle v, (\gamma_\alpha - \psi)(y) \rangle} \end{split}$$

Define
$$\tilde{\phi} = \phi - \psi$$
, $P(y_1, \ldots, y_n, v_1, \ldots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.

$$\Pr[\phi(E(x) + Z) = x] = \mathbb{E}_{x,Z} \mathbf{1}[\phi(E(x) + Z) = x]$$
$$= \mathbb{E}_{x,Z} \sum_{\alpha \in \mathbb{F}_p^s} \widehat{f}(\alpha) \omega^{Q_\alpha(y)} \mathbb{E}_{v \in \mathbb{F}_p^k} \omega^{\langle v, (\gamma_\alpha - \psi)(E(x) + Z) \rangle}$$

Define
$$\tilde{\phi} = \phi - \psi$$
, $P(y_1, \ldots, y_n, v_1, \ldots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.

$$\Pr[\phi(E(x) + Z) = x] \leq \\ \sum_{\alpha \in \mathbb{F}_p^{\mathrm{s}}} \left(|\widehat{f}(\alpha)| \mathbb{E}_{x,Z} \left| \omega^{Q_{\alpha}(y)} \mathbb{E}_{v \in \mathbb{F}_p^{k}} \omega^{\langle v, (\gamma_{\alpha} - \psi)(E(x) + Z) \rangle} \right| \right)$$

Define
$$\tilde{\phi} = \phi - \psi$$
, $P(y_1, \ldots, y_n, v_1, \ldots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.

$$\Pr[\phi(E(x) + Z) = x] \leq \left(\sum_{\alpha \in \mathbb{F}_p^{s}} |\widehat{f}(\alpha)| \right) \max_{\alpha \in \mathbb{F}_p^{s}} \mathbb{E}_{x, Z} \left| \omega^{Q_{\alpha}(y)} \mathbb{E}_{v \in \mathbb{F}_p^{k}} \omega^{\langle v, (\gamma_{\alpha} - \psi)(E(x) + Z) \rangle} \right|$$

Define
$$\tilde{\phi} = \phi - \psi$$
, $P(y_1, \ldots, y_n, v_1, \ldots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.

$$\Pr[\phi(E(x) + Z) = x] \leq p^{s/2} \max_{\alpha \in \mathbb{F}_p^k} \mathbb{E}_{x,Z} \left| \omega^{Q_{\alpha}(y)} \mathbb{E}_{v \in \mathbb{F}_p^k} \omega^{\langle v, (\gamma_{\alpha} - \psi)(E(x) + Z) \rangle} \right|$$

Define
$$\tilde{\phi} = \phi - \psi$$
, $P(y_1, \ldots, y_n, v_1, \ldots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.

$$\Pr[\phi(E(x) + Z) = x] \le$$
$$p^{s/2} \max_{\alpha \in \mathbb{F}_p^s} \mathbb{E}_{x,Z} \mathbf{1}[(\gamma_{\alpha} - \psi)(E(x) + Z) = x]$$

Define
$$\tilde{\phi} = \phi - \psi$$
, $P(y_1, \ldots, y_n, v_1, \ldots, v_k) = \langle v, \tilde{\phi}(y) \rangle$.

 $\deg(\gamma_{\alpha}(y)) < d$

$$\Pr[\phi(E(x) + Z) = x] \le$$

$$p^{s/2} \max_{\alpha \in \mathbb{F}_p^s} \Pr[(\gamma_{\alpha} - \psi)(E(x) + Z) = x]$$

$$\le \epsilon$$

We're now looking at $(\gamma_{\alpha} - \psi)$, which is a polynomial of degree d - 1 – by the induction hypothesis, beyond some *k* the above will always hold.

MAIN THEOREM PROOF OUTLINE

► If high analytic rank:

- suffices to show equidistribution of $\phi(Z)$
- can be thought of in terms of rank of the restriction; arank is natural so we apply the theorem from the other paper

► If low analytic rank:

- Equivalent to saying a related polynomial has high bias
- Functions with high bias have some coherent structure in terms of their derivatives
- Exploiting that structure and doing some Fourier analysis, can write the claim in terms of a lower-degree instance
- \blacktriangleright \implies win by induction

CORE PROPERTY

Definition

A notion of rank satisfies the (A, B)-core property if, for every (sufficiently high-rank) *d*-tensor *T*, there exist $J_1, \ldots, J_d \subset$ of size at most $A(\operatorname{rk}(T))$ such that $\operatorname{rk}(T_{|J_{[d]}} \geq B(\operatorname{rk}(T))$.

CORE PROPERTY

Definition

A notion of rank satisfies the (A, B)-core property if, for every (sufficiently high-rank) *d*-tensor *T*, there exist $J_1, \ldots, J_d \subset$ of size at most $A(\operatorname{rk}(T))$ such that $\operatorname{rk}(T_{|J_{[d]}} \geq B(\operatorname{rk}(T))$.

Definition

rk satisfies the **linear core property** if *A* and *B* are linear functions.

MATRIX RANK SATISFIES CORE PROPERTY

For matrix rank, we can set both *A* and *B* to be $x \mapsto x$ (perfect linear core property).

Theorem

If a natural rank rk satisfies the linear core property, for every σ there exist C, $\kappa > 0$ such that, for every d-tensor T,

$$\Pr_{I \sim [n_1]_{\sigma}, \dots, I_d \sim [n_d]_{\sigma}} [\operatorname{rk}(T_{|I_{[d]}}) > \kappa \operatorname{rk}(T)] \ge 1 - C e^{-\kappa \operatorname{rk}(T)}$$

Theorem

If a natural rank rk satisfies the linear core property, for every σ there exist C, $\kappa > 0$ such that, for every d-tensor T,

$$\Pr_{I \sim [n_1]_{\sigma}, \dots, I_d \sim [n_d]_{\sigma}} [\operatorname{rk}(T_{|I_{[d]}}) > \kappa \operatorname{rk}(T)] \ge 1 - Ce^{-\kappa \operatorname{rk}(T)}.$$

Proof: Fix some sets J_1, \ldots, J_d of size $a \operatorname{rk}(T)$ such that $\operatorname{rk}(T_{J_{[d]}} \ge b \operatorname{rk}(T)$. Choose $\lambda = b/(3da)$. By Chernoff bound, if we do a $(1 - \lambda)$ -restriction, w.h.p. all J_i s have at least $(1 - 2\lambda)$ fraction remaining.

Theorem

If a natural rank rk satisfies the linear core property, for every σ there exist C, $\kappa > 0$ such that, for every d-tensor T,

$$\Pr_{I \sim [n_1]_{\sigma}, \dots, I_d \sim [n_d]_{\sigma}} [\operatorname{rk}(T_{|I_{[d]}}) > \kappa \operatorname{rk}(T)] \ge 1 - Ce^{-\kappa \operatorname{rk}(T)}$$

Proof: Fix some sets J_1, \ldots, J_d of size $a \operatorname{rk}(T)$ such that $\operatorname{rk}(T_{J_{[d]}} \ge b \operatorname{rk}(T)$. Choose $\lambda = b/(3da)$. By Chernoff bound, if we do a $(1 - \lambda)$ -restriction, w.h.p. all J_i s have at least $(1 - 2\lambda)$ fraction remaining.

$$\Pr_{I \sim [n_1]_{1-\lambda}, \dots, I_d \sim [n_d]_{1-\lambda}}[\operatorname{rk}(T_{|I_{[d]}}) \geq \frac{c}{3}\operatorname{rk}(T)] \geq 1 - Ce^{-\kappa\operatorname{rk}(T)}.$$

Theorem

If a natural rank rk satisfies the linear core property, for every σ there exist C, $\kappa > 0$ such that, for every d-tensor T,

$$\Pr_{I \sim [n_1]_{\sigma}, \dots, I_d \sim [n_d]_{\sigma}} [\operatorname{rk}(T_{|I_{[d]}}) > \kappa \operatorname{rk}(T)] \ge 1 - Ce^{-\kappa \operatorname{rk}(T)}.$$

0

$$\Pr_{I \sim [n_1]_{1-\lambda}, \dots, I_d \sim [n_d]_{1-\lambda}} [\operatorname{rk}(T_{|I_{[d]}}) \ge \frac{c}{3} \operatorname{rk}(T)] \ge 1 - Ce^{-\kappa \operatorname{rk}(T)}.$$
Now, just iterate this argument *t* times until $(1 - \lambda)^t < \sigma$.

CONCLUSION / LINGERING QUESTIONS