The Preliminaries: NW Polynomial and Relative Rank

Nathan

2023

▶ Set-multilinear polynomial: variable sets *X*, *Y*, *Z*, . . . – each monomial exactly one variable from each set (eg. *x*2*y*1*z*⁴ + 5*x*3*y*2*z*² − 12*x*2*y*2*z*2)

- ▶ Set-multilinear polynomial: variable sets *X*, *Y*, *Z*, . . . each monomial exactly one variable from each set (eg. *x*2*y*1*z*⁴ + 5*x*3*y*2*z*² − 12*x*2*y*2*z*2)
- ▶ Depth-*d* set-multilinear formula: $\sum \prod \sum \prod ...$ (*d* times) of variables, with only set-multilinear intermediate terms

- ▶ Set-multilinear polynomial: variable sets *X*, *Y*, *Z*, . . . each monomial exactly one variable from each set (eg. *x*2*y*1*z*⁴ + 5*x*3*y*2*z*² − 12*x*2*y*2*z*2)
- ▶ Depth-*d* set-multilinear formula: $\sum \prod \sum \prod ...$ (*d* times) of variables, with only set-multilinear intermediate terms
- \triangleright Counting argument \rightarrow most set-multilinear polynomials don't have small depth-*d* set-multilinear formulas

- ▶ Set-multilinear polynomial: variable sets *X*, *Y*, *Z*, . . . each monomial exactly one variable from each set (eg. *x*2*y*1*z*⁴ + 5*x*3*y*2*z*² − 12*x*2*y*2*z*2)
- ▶ Depth-*d* set-multilinear formula: $\sum \prod \sum \prod ...$ (*d* times) of variables, with only set-multilinear intermediate terms
- \triangleright Counting argument \rightarrow most set-multilinear polynomials don't have small depth-*d* set-multilinear formulas
- \triangleright Goal: find such a polynomial in VNP i.e. where coefficients are efficiently computable

$NW_{n,d}(X) = \quad \sum \quad \prod x_{f(j),j}$ $f(z) \in \mathbb{F}_n[z]$ $j \in [d]$ $\deg(f) < d/2$

$$
NW_{n,d}(X) = \sum_{\substack{f(z) \in \mathbb{F}_n[z] \\ \deg(f) < d/2}} \prod_{j \in [d]} x_{f(j),j}
$$

 \blacktriangleright The *d* variables involved in each monomial of $NW_{n,d}$ correspond to evaluating a degree-*d*/2 polynomial on *d* points

$$
NW_{n,d}(X) = \sum_{\substack{f(z) \in \mathbb{F}_n[z] \\ \deg(f) < d/2}} \prod_{j \in [d]} x_{f(j),j}
$$

- \blacktriangleright The *d* variables involved in each monomial of $NW_{n,d}$ correspond to evaluating a degree-< *d*/2 polynomial on *d* points
- ▶ So, any two monomials share fewer than *d*/2 variables

$$
NW_{n,d}(X) = \sum_{\substack{f(z) \in \mathbb{F}_n[z] \\ \deg(f) < d/2}} \prod_{j \in [d]} x_{f(j),j}
$$

Example: $n = 8$, $d = 3$

$$
NW_{n,d}(X) = \sum_{\substack{f(z) \in \mathbb{F}_n[z] \\ \deg(f) < d/2}} \prod_{j \in [d]} x_{f(j),j}
$$

Example: $n = 8$, $d = 3$

Degree-1 polynomials over \mathbb{F}_8 : Nisan-Wigderson polynomial:

$$
0j + 0 \qquad \qquad x_0 y_0 z_0 +
$$

$$
NW_{n,d}(X) = \sum_{\substack{f(z) \in \mathbb{F}_n[z] \\ \deg(f) < d/2}} \prod_{j \in [d]} x_{f(j),j}
$$

Example: $n = 8$, $d = 3$

Degree-1 polynomials over \mathbb{F}_8 : Nisan-Wigderson polynomial:

 $0j + 1$ *x*1*y*1*z*1+

$$
NW_{n,d}(X) = \sum_{\substack{f(z) \in \mathbb{F}_n[z] \\ \deg(f) < d/2}} \prod_{j \in [d]} x_{f(j),j}
$$

Example: $n = 8$, $d = 3$

Degree-1 polynomials over \mathbb{F}_8 : Nisan-Wigderson polynomial:

$$
NW_{n,d}(X) = \sum_{\substack{f(z) \in \mathbb{F}_n[z] \\ \deg(f) < d/2}} \prod_{j \in [d]} x_{f(j),j}
$$

Example: $n = 8$, $d = 3$

Degree-1 polynomials over \mathbb{F}_8 : Nisan-Wigderson polynomial:

Given variable sets X_1, \ldots, X_d , divide the sets into "positive" and "negative" (e.g. X_1, X_2, X_3, X_4)

- \blacktriangleright Given variable sets X_1, \ldots, X_d , divide the sets into "positive" and "negative" (e.g. X_1, X_2, X_3, X_4)
- ▶ For set-multilinear polynomial *p* over these vars, define "partial derivative matrix":
	- ▶ rows indexed by monomials on positive vars
	- ▶ columns indexed by monomials on negative vars
	- ▶ entry in a given (row, column) pair is the **coefficient on the product of those monomials in** *p*

- \blacktriangleright Given variable sets X_1, \ldots, X_d , divide the sets into "positive" and "negative" (e.g. X_1, X_2, X_3, X_4)
- ▶ For set-multilinear polynomial *p* over these vars, define "partial derivative matrix":
	- ▶ rows indexed by monomials on positive vars
	- ▶ columns indexed by monomials on negative vars
	- ▶ entry in a given (row, column) pair is the **coefficient on the product of those monomials in** *p*
- \blacktriangleright relrk(*p*) with respect to the variable-set division :=

rank of this matrix rank of this matrix $\sqrt{\prod_i |X_i|}$ = $\frac{u}{\sqrt{2}}$ *n d*

RELATIVE RANK EXAMPLE: $n = 2$, $d = 4$

 $p = w_0 x_0 y_0 z_0 + 4 w_0 x_1 y_0 z_1 + 4 w_1 x_0 y_1 z_0 + w_1 x_1 y_1 z_1 + w_0 x_0 y_1 z_1 + w_1 x_1 y_0 z_0$

RELATIVE RANK EXAMPLE: $n = 2$, $d = 4$

 $p = w_0 x_0 y_0 z_0 + 4 w_0 x_1 y_0 z_1 + 4 w_1 x_0 y_1 z_0 + w_1 x_1 y_1 z_1 + w_0 x_0 y_1 z_1 + w_1 x_1 y_0 z_0$

RELATIVE RANK EXAMPLE: $n = 2$, $d = 4$

 $p = w_0 x_0 y_0 z_0 + 4 w_0 x_1 y_0 z_1 + 4 w_1 x_0 y_1 z_0 + w_1 x_1 y_1 z_1 + w_0 x_0 y_1 z_1 + w_1 x_1 y_0 z_0$

FACTS ABOUT RELRK: NORMALIZATION CONSTANT

Normalization constant $\frac{1}{\sqrt{2}}$ $\frac{d}{d\pi^d}$ is such that relrk = 1 for a square matrix with full rank

FACTS ABOUT RELRK: NORMALIZATION CONSTANT

Normalization constant $\frac{1}{\sqrt{4}}$ $\frac{d}{d}$ is such that relrk = 1 for a square matrix with full rank

▶ Square matrix has half of the variable sets as rows and half as columns, so is $n^{d/2} \times n^{d/2}$

FACTS ABOUT RELRK: IMBALANCE

If the division of variable sets is unbalanced (i.e. there are t more positive sets than negative sets), then relrk is at most

$$
\frac{n^{(d-t)/2}}{n^{d/2}} = n^{-t/2}
$$

FACTS ABOUT RELRK: IMBALANCE

If the division of variable sets is unbalanced (i.e. there are *t* more positive sets than negative sets), then relrk is at most

$$
\frac{n^{(d-t)/2}}{n^{d/2}} = n^{-t/2}
$$

▶ A matrix with $n^{(d-t)/2}$ rows and $n^{(d+t)/2}$ columns (or vice versa) has rank at most *n* (*d*−*t*)/2 .

FACTS ABOUT RELRK: SUBADDITIVITY

For a given vertex division,

 $relrk(f+g) \leq relrk(f) + relrk(g)$

FACTS ABOUT RELRK: SUBADDITIVITY

For a given vertex division,

$$
\text{relrk}(f + g) \le \text{relrk}(f) + \text{relrk}(g)
$$

Suppose $p = fg$ where f is a set-multilinear polynomial over some of the variable sets, and *g* is a set-multilinear polynomial over the others. Then, relative to any division of the variable sets,

 $relrk(p) = relrk(f) \cdot relrk(g)$

$$
\mathcal{M}(f) = \begin{bmatrix} x_0 & y_0 & y_1 \\ 1 & 1 & \\ 0 & 3 & \end{bmatrix} \quad \mathcal{M}(g) = \begin{bmatrix} x_0 & z_1 \\ 1 & 1 \\ z_2 & 2 \end{bmatrix}
$$

$$
\mathcal{M}(f) = \begin{bmatrix} x_0 & y_0 & y_1 \\ 1 & 1 \\ 0 & 3 \end{bmatrix} \quad \mathcal{M}(g) = \begin{bmatrix} x_0 & z_1 & z_2 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix}
$$

$$
w_0 x_0 \begin{bmatrix} y_0 z_0 & y_0 z_1 & y_1 z_0 & y_1 z_1 \\ 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 6 & 6 \end{bmatrix}
$$

Suppose $p = f_1 \cdot \ldots \cdot f_j$, where each f_i is a set-multilinear polynomial over some of the variable sets (non-overlapping). Then, relative to any division of the variable sets,

$$
\mathrm{relrk}(p) = \prod_i \mathrm{relrk}(f_i)
$$

$$
NW_{n,d}(X) = \sum_{\substack{f(z) \in \mathbb{F}_n[z] \\ \deg(f) < d/2}} \prod_{j \in [d]} x_{f(j),j}
$$

$$
NW_{n,d}(X) = \sum_{\substack{f(z) \in \mathbb{F}_n[z] \\ \deg(f) < d/2}} \prod_{j \in [d]} x_{f(j),j}
$$

 \triangleright Choose a row of the partial derivative matrix. Corresponds to one variable from each of *d*/2 of the sets.

$$
NW_{n,d}(X) = \sum_{\substack{f(z) \in \mathbb{F}_n[z] \\ \deg(f) < d/2}} \prod_{j \in [d]} x_{f(j),j}
$$

- ▶ Choose a row of the partial derivative matrix. Corresponds to one variable from each of *d*/2 of the sets.
- \blacktriangleright There's exactly one degree- $d/2$ polynomial that picks out those variables.

$$
NW_{n,d}(X) = \sum_{\substack{f(z) \in \mathbb{F}_n[z] \\ \deg(f) < d/2}} \prod_{j \in [d]} x_{f(j),j}
$$

- ▶ Choose a row of the partial derivative matrix. Corresponds to one variable from each of *d*/2 of the sets.
- \blacktriangleright There's exactly one degree- $d/2$ polynomial that picks out those variables.
- ▶ So, each row has exactly one non-zero entry.

$$
NW_{n,d}(X) = \sum_{\substack{f(z) \in \mathbb{F}_n[z] \\ \deg(f) < d/2}} \prod_{j \in [d]} x_{f(j),j}
$$

- ▶ Choose a row of the partial derivative matrix. Corresponds to one variable from each of *d*/2 of the sets.
- \blacktriangleright There's exactly one degree- $\lt d/2$ polynomial that picks out those variables.
- ▶ So, each row has exactly one non-zero entry.
- ▶ Same logic shows each column has exactly one non-zero entry, so \implies permutation matrix \implies full rank

BRIEF HISTORY OF PARTIAL DERIVATIVE MEASURES

60-second history lesson!

NOTATION PAIN

Ok, now we should probably look at the text of the paper and figure out what all their letters mean.