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» Set-multilinear polynomial: variable sets X, Y, Z, ... —each
monomial exactly one variable from each set (eg.
XoY1Z4 + 5X3y222 — 1ZX2]/222)

» Depth-d set-multilinear formula: > [[> ]]... (d times) of
variables, with only set-multilinear intermediate terms

» Counting argument — most set-multilinear polynomials
don’t have small depth-d set-multilinear formulas

» Goal: find such a polynomial in VNP —i.e. where
coefficients are efficiently computable
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NISAN-WIGDERSON POLYNOMIAL

NWoa(X) = > L %0,

f(2)€Fu[z] jeld]
deg(f)<d/2

» The d variables involved in each monomial of NW,, 4
correspond to evaluating a degree-< d/2 polynomial on d
points

» So, any two monomials share fewer than d/2 variables
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NWoa(X) = > L %0,
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Example: n =8,d =3

Degree-1 polynomials over Fg: Nisan-Wigderson polynomial:
0j+0 XoYoZo+
Oj +1 xX1y1z1+
3j +4 X4Y7Zo+
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RELATIVE RANK

» Given variable sets X1, ..., X;, divide the sets into
"positive” and “negative” (e.g. X1, X2, X3, X34)

» For set-multilinear polynomial p over these vars, define
“partial derivative matrix”:

» rows indexed by monomials on positive vars

» columns indexed by monomials on negative vars

» entry in a given (row, column) pair is the coefficient on the
product of those monomials in p

» relrk(p) with respect to the variable-set division :=

rank of this matrix B rank of this matrix

VI Xl a Vnd
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RELATIVE RANK EXAMPLE: n =2,d =4

p = woXoYoZo+4wox1Yoz1+4w1 Xoy120+W1X1Y121+WoX0Y 121 +W1X1Y0Z0
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FACTS ABOUT RELRK: NORMALIZATION CONSTANT

Normalization constant ﬁ is such that relrk = 1 for a square
matrix with full rank

» Square matrix has half of the variable sets as rows and half
as columns, so is n/2 x n/2
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FACTS ABOUT RELRK: IMBALANCE

If the division of variable sets is unbalanced (i.e. there are ¢
more positive sets than negative sets), then relrk is at most

nd—1/2

—t/2
/2

=n

» A matrix with n(4=9/2 rows and n(@+")/2 columns (or vice

versa) has rank at most n(?=9/2,



FACTS ABOUT RELRK: SUBADDITIVITY

For a given vertex division,

relrk(f + g) < relrk(f) + relrk(g)



FACTS ABOUT RELRK: SUBADDITIVITY

For a given vertex division,
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» Rank is subadditive



FACTS ABOUT RELRK: MULTIPLICATIVITY

Suppose p = fg where f is a set-multilinear polynomial over
some of the variable sets, and g is a set-multilinear polynomial
over the others. Then, relative to any division of the variable
sets,

relrk(p) = relrk(f) - relrk(g)
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FACTS ABOUT RELRK: MULTIPLICATIVITY

Suppose p = f1 - ... fj, where each f; is a set-multilinear
polynomial over some of the variable sets (non-overlapping).
Then, relative to any division of the variable sets,

relrk(p) = H relrk(f;)
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RELRK(NW) = 1 FOR ALL BALANCED DIVISIONS

NW,a(X) = > [T x0),

f(2)€Fu[z] jeld]
deg(f)<d/2

» Choose a row of the partial derivative matrix. Corresponds
to one variable from each of d/2 of the sets.

» There’s exactly one degree-< d/2 polynomial that picks
out those variables.

» So, each row has exactly one non-zero entry.

» Same logic shows each column has exactly one non-zero
entry, so = permutation matrix = full rank



BRIEF HISTORY OF PARTIAL DERIVATIVE MEASURES

60-second history lesson!



NOTATION PAIN

Ok, now we should probably look at the text of the paper and
tigure out what all their letters mean.



