Matching Algorithms in the Stochastic Block Model

Nathan Sheffield, Divya Shyamal Mentors: Anna Brandenberger, Byron Chin

MIT SPUR

2023

A Story

\blacktriangle \blacktriangle \blacktriangle 8 **.** 8

P•P•P•P•P•P•P•P•P•P•P•P•P•P

Po Po

Applied Math Problems

Pure Math Problems

Interest Probabilities

18C

18

 \blacktriangle Å Ж Å

 \blacktriangle Å Æ

ONLINE MATCHING, SPARSE BIPARTITE SBMS

- ▶ *n* left vertices and *n* right vertices; *q* classes on each side
- \blacktriangleright Edge probabilities depend on classes ($p_{ij} = \frac{c_{ij}}{n}$ $\frac{y}{n}$
- ▶ Online setting: left vertices arrive sequentially. Must decide which right vertex to match it to (if any) before seeing the next left vertex.
- ▶ Class of each left vertex is drawn uniformly at random
- **►** Interested in behavior as $n \to \infty$

BIPARTITE ERDŐS-RÉNYI GRAPH

Theorem (Mastin, Jaillet)

The expected matching size in the online setting on a bipartite Erdős–Rényi graph with $p = \frac{c}{n}$ $\frac{c}{n}$, $n \to \infty$ *is*

$$
\left(1 - \frac{\ln(2 - e^{-c})}{c}\right)n + o(n)
$$

Figure: Expected size of matching vs. *c*

ALGORITHM 1: DUMB-GREEDY

- ▶ DUMB-GREEDY: choose an available edge uniformly at random to add to the matching
- ▶ Optimal in the **equitable** case; achieves the same expected matching size as in the bipartite Erdős–Rényi case with $c = avg$. degree of each vertex
- ▶ **Equitable** case: all vertices have same expected degree

Figure: Equitable and non-equitable examples, $|\alpha| = |\beta| = \frac{n}{2}$

WHERE DUMB-GREEDY FAILS

A better strategy in this case is to match to β vertices whenever there is one available.

ALGORITHM 2: DEGREEDY

- ▶ DEGREEDY: of available right vertices, consider those with lowest expected degree. Choose one uniformly at random to match with.
- ▶ "Prefers" classes with lowest expected degree

Figure: DEGREEDY suboptimal. $|\alpha| = |\beta| = \frac{n}{2}$

ALGORITHM 3: SHORTSIGHTED

- ▶ SHORTSIGHTED: minimize the probability of not matching the next vertex
- \blacktriangleright *u*_{α} = # unmatched α vertices, *u*_{β} = # unmatched β vertices. Prefer to match to class

$$
\underset{c \in \{\alpha,\beta\}}{\text{argmin}} \sum_{i=0}^{1} \frac{1}{2} (1 - p_{i\alpha})^{u_{\alpha} - 1\{c = \alpha\}} (1 - p_{i\beta})^{u_{\beta} - 1\{c = \beta\}}
$$

▶ SHORTSIGHTED performs very well in practice, but is not optimal

ALGORITHM 4: BRUTE-FORCE

▶ BRUTE-FORCE:

- ▶ Precompute expected matching size found by algorithm at each "state"
- ▶ At each step, move to the state with highest expected matching size
- ▶ BRUTE-FORCE is the optimal online algorithm
- **Exercise** Computationally very expensive, $\Theta(n^{q+1})$

WHERE SHORTSIGHTED FAILS

Figure: $|\alpha| = |\beta| = \frac{n}{2}$

SHORTSIGHTED achieves ≈ 0.574946*n*, while BRUTE-FORCE achieves at least $\approx 0.575597n$ in expectation (gap of $\geq .0006n$)

COMPARISON BETWEEN SHORTSIGHTED AND BRUTE-FORCE

Figure: SHORTSIGHTED represented by red curve, BRUTE-FORCE by magenta. Yellow indicates a preference for class α , green for β in SHORTSIGHTED.

True (Offline) Matching Numbers

 \blacktriangleright If \exists vertex of degree 1, add its edge to the matching.

 \blacktriangleright If \exists vertex of degree 1, choose one at random and add its edge to the matching.

 \blacktriangleright If \exists vertex of degree 1, choose one at random and add its edge to the matching.

 \blacktriangleright If \exists vertex of degree 1, choose one at random and add its edge to the matching.

- ▶ If ∃ vertex of degree 1, choose one at random and add its edge to the matching.
- ▶ Otherwise, add any random edge

- ▶ If ∃ vertex of degree 1, choose one at random and add its edge to the matching.
- ▶ Otherwise, add any random edge

- ▶ If ∃ vertex of degree 1, choose one at random and add its edge to the matching.
- ▶ Otherwise, add any random edge

KNOWN RESULTS IN ERDŐS–RÉNYI CASE

Optimality

Theorem (Karp, Sipser)

On an Erd˝os–R´enyi graph with edge probability ^c n , whp Karp–Sipser constructs a matching within o(*n*) *of optimal.*

Phase Transition

Theorem (Karp, Sipser)

On an Erd˝os–R´enyi graph with edge probability ^c n , whp the Karp–Sipser core has size

- \triangleright *o*(*n*) *if* $c < e$
- \blacktriangleright $\Theta(n)$ *if* $c > e$

COMPARISONS TO SBM CASE

Optimality

- ▶ The Karp–Sipser is optimal in some specific cases, including the equitable case, which has the same matching number as Erdős-Rényi.
- ▶ It is **not** optimal on general SBM graphs

Phase Transition

- ▶ The Karp–Sipser core is $o(n)$ whenever average degree is < *e* in all classes
- \blacktriangleright It is also $o(n)$ for more cases

WHERE KARP-SIPSER FAILS

WHERE KARP-SIPSER FAILS

WHERE KARP-SIPSER FAILS

EQUITABLE CASE

Theorem

Karp–Sipser is asympotically optimal on equitable SBM graphs, and finds whp a matching of size

$$
\left(1 - \frac{x + ce^{-x} + xce^{-x}}{2c}\right)n + o(n)
$$

where c is the average degree, and x is the smallest soln to $x = ce^{-ce^{-x}}$

Corollary

DUMB-GREEDY achieves tight competitive ratio $\frac{c-\ln(2-e^{-c})}{(2c-x+ce^{-x}+xe^{-x})}$ (2*c*−*x*+*ce*−*x*+*xce*−*x*) *on equitable SBM graphs (minimum over c* \approx .837)

Claim: The Karp-Sipser core is $o(n)$ whenever the expected degree is less than e for every class.

Claim: The Karp–Sipser core is *o*(*n*) whenever the expected degree is less than *e* for every class.

Proof Outline:

▶ Neighbourhood of a vertex in sparse SBM looks like a type of random tree

Claim: The Karp–Sipser core is *o*(*n*) whenever the expected degree is less than *e* for every class.

Proof Outline:

- ▶ Neighbourhood of a vertex in sparse SBM looks like a type of random tree
- ▶ Probability of tree structures near the root allowing Karp–Sipser to remove the root is bounded by the draw probability of a game on the tree

Claim: The Karp–Sipser core is *o*(*n*) whenever the expected degree is less than *e* for every class.

Proof Outline:

- ▶ Neighbourhood of a vertex in sparse SBM looks like a type of random tree
- ▶ Probability of tree structures near the root allowing Karp–Sipser to remove the root is bounded by the draw probability of a game on the tree
- ▶ Draw probability \rightarrow 0 iff there's exactly one fixed point of

$$
\begin{bmatrix} x_1 \\ \cdots \\ x_q \end{bmatrix} \mapsto \begin{bmatrix} e^{-\left(\sum_j c_{1j} \bar{S}_j e^{-\left(\sum_k c_{jk} \bar{S}_k x_k\right)}\right)} \\ \cdots \\ e^{-\left(\sum_j c_{qj} \bar{S}_j e^{-\left(\sum_k c_{jk} \bar{S}_k x_k\right)}\right)} \end{bmatrix}
$$

 $G(n, 3/n)$

Supercritical

 $G(n, n, 3/n)$

Supercritical

All of the edges from both

Subcritical

• Is there a simpler characterization of the critical threshold?

▶ Is there a simpler characterization of the critical threshold? ▶ Is a label-aware version of Karp–Sipser optimal?

- ▶ Is there a simpler characterization of the critical threshold?
- ▶ Is a label-aware version of Karp–Sipser optimal?
- ▶ Does SHORTSIGHTED always achieve competitive ratio close to BRUTE-FORCE?

- ▶ Is there a simpler characterization of the critical threshold?
- ▶ Is a label-aware version of Karp–Sipser optimal?
- ▶ Does SHORTSIGHTED always achieve competitive ratio close to BRUTE-FORCE?
- ▶ Does there exist a linear-time algorithm with the same competitive ratio as BRUTE-FORCE?

ACKNOWLEDGEMENTS

- ▶ Thanks to the organizers of SPUR for putting together such a wonderful program! (And for matching us to an interesting problem :))
- ▶ Thanks to our mentors, Anna and Byron, for working with us (and sitting through a lot of baffled chalkboard rambling)
- ▶ Thanks to Elchanan Mossel for suggesting the problem topic