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ONLINE MATCHING, SPARSE BIPARTITE SBMS

v

n left vertices and n right vertices; g classes on each side
Edge probabilities depend on classes (p;; = %)

Online setting: left vertices arrive sequentially. Must
decide which right vertex to match it to (if any) before
seeing the next left vertex.

Class of each left vertex is drawn uniformly at random

Interested in behavior as n — oo



BIPARTITE ERDOS-RENYI GRAPH
Theorem (Mastin, Jaillet)
The expected matching size in the online setting on a bipartite

Erdds—Rényi graph withp = ©, n — oo is

<1 _ In(2—¢)

C

> n+o(n)

) E

Figure: Expected size of matching vs. ¢



ALGORITHM 1: DUMB-GREEDY

» DUMB-GREEDY: choose an available edge uniformly at
random to add to the matching

» Optimal in the equitable case; achieves the same expected
matching size as in the bipartite Erd6s-Rényi case with
c = avg. degree of each vertex

» Equitable case: all vertices have same expected degree

NV
of ot 1

Figure: Equitable and non-equitable examples, |a| = [3| = §



WHERE DUMB-GREEDY FAILS

100 —()

Figure: || = || = 5

A better strategy in this case is to match to 3 vertices whenever
there is one available.



ALGORITHM 2: DEGREEDY

» DEGREEDY: of available right vertices, consider those
with lowest expected degree. Choose one uniformly at
random to match with.

» “Prefers” classes with lowest expected degree

Figure: DEGREEDY suboptimal. |a| = |8] = &



ALGORITHM 3: SHORTSIGHTED

» SHORTSIGHTED: minimize the probability of not
matching the next vertex

» u, = #unmatched a vertices, ug = # unmatched f3 vertices.
Prefer to match to class
1 1{c=8}
argmin ) _ 5 (1= pia) = (1= pig) "1
ce{a.B} =0

» SHORTSIGHTED performs very well in practice, but is not
optimal



ALGORITHM 4: BRUTE-FORCE

» BRUTE-FORCE:

» Precompute expected matching size found by algorithm at
each “state”

» At each step, move to the state with highest expected
matching size

» BRUTE-FORCE is the optimal online algorithm
» Computationally very expensive, ©(n7*1)



WHERE SHORTSIGHTED FAILS
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Figure: || = |B] = 5

SHORTSIGHTED achieves ~ 0.574946n, while BRUTE-FORCE
achieves at least ~ 0.575597n in expectation (gap of > .00061)



COMPARISON BETWEEN SHORTSIGHTED AND
BRUTE-FORCE

Expected behavior of SHORTSIGHTED AND BRUTE-FORCE
0.5

Fraction of unmatched betas

0.0 0.1 0.2 0.3 0.4 0.5
Fraction of unmatched alphas

Figure: SHORTSIGHTED represented by red curve, BRUTE-FORCE
by magenta. Yellow indicates a preference for class «, green for 3 in
SHORTSIGHTED.



True (Offline) Matching Numbers
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KNOWN RESULTS IN ERDOS-RENYI CASE

Optimality

Theorem (Karp, Sipser)
On an Erd0s—Rényi graph with
edge probability ., whp
Karp-Sipser constructs a

matching within o(n) of optimal.

Phase Transition

Theorem (Karp, Sipser)
On an Erd6s—Rényi graph with
edge probability -, whp the
Karp-Sipser core has size

» o(n)ifc<e

> O(n)ifc>e



COMPARISONS TO SBM CASE

Optimality

> The Karp-Sipser is Phase Transition
optimal in some specific
cases, including the
equitable case, which has
the same matching

number as Erdés—-Rényi . » Itis also o(n) for more
cases

» The Karp-Sipser core is
o(n) whenever average
degree is < ¢ in all classes

» It is not optimal on
general SBM graphs
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EQUITABLE CASE

Theorem

Karp-Sipser is asympotically optimal on equitable SBM graphs, and
finds whp a matching of size

—x —x
(1_ X + ce zc—f—xce )n—l—o(n)

where c is the average degree, and x is the smallest soln to x = ce=% "

Corollary
DUMB-GREEDY achieves tight competitive ratio ——22=¢"")

(2c—x—4ce=*+xce—*)
on equitable SBM graphs (minimum over ¢ ~ .837)
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CRITICAL THRESHOLD

Claim: The Karp-Sipser core is o(1) whenever the expected
degree is less than e for every class.

Proof Outline:
» Neighbourhood of a vertex in sparse SBM looks like a type
of random tree
» Probability of tree structures near the root allowing
Karp-Sipser to remove the root is bounded by the draw
probability of a game on the tree
» Draw probability — 0 iff there’s exactly one fixed point of
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CRITICAL THRESHOLD IS WEIRD

G(n, 3/n)
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CRITICAL THRESHOLD IS WEIRD

All of the edges from both

Subcritical
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OPEN QUESTIONS

v

Is there a simpler characterization of the critical threshold?
Is a label-aware version of Karp-Sipser optimal?

Does SHORTSIGHTED always achieve competitive ratio
close to BRUTE-FORCE?

Does there exist a linear-time algorithm with the same
competitive ratio as BRUTE-FORCE?
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