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ONLINE MATCHING, SPARSE BIPARTITE SBMS

▶ n left vertices and n right vertices; q classes on each side
▶ Edge probabilities depend on classes (pij =

cij
n )

▶ Online setting: left vertices arrive sequentially. Must
decide which right vertex to match it to (if any) before
seeing the next left vertex.

▶ Class of each left vertex is drawn uniformly at random
▶ Interested in behavior as n → ∞



BIPARTITE ERDŐS–RÉNYI GRAPH

Theorem (Mastin, Jaillet)

The expected matching size in the online setting on a bipartite
Erdős–Rényi graph with p = c

n , n → ∞ is(
1 − ln(2 − e−c)

c

)
n + o(n)

Figure: Expected size of matching vs. c



ALGORITHM 1: DUMB-GREEDY
▶ DUMB-GREEDY: choose an available edge uniformly at

random to add to the matching
▶ Optimal in the equitable case; achieves the same expected

matching size as in the bipartite Erdős–Rényi case with
c = avg. degree of each vertex

▶ Equitable case: all vertices have same expected degree
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Figure: Equitable and non-equitable examples, |α| = |β| = n
2



WHERE DUMB-GREEDY FAILS
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Figure: |α| = |β| = n
2

A better strategy in this case is to match to β vertices whenever
there is one available.



ALGORITHM 2: DEGREEDY
▶ DEGREEDY: of available right vertices, consider those

with lowest expected degree. Choose one uniformly at
random to match with.

▶ “Prefers” classes with lowest expected degree
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Figure: DEGREEDY suboptimal. |α| = |β| = n
2



ALGORITHM 3: SHORTSIGHTED

▶ SHORTSIGHTED: minimize the probability of not
matching the next vertex

▶ uα = # unmatched α vertices, uβ = # unmatched β vertices.
Prefer to match to class

argmin
c∈{α,β}

1∑
i=0

1
2
(1 − piα)

uα−1{c=α} (1 − piβ
)uβ−1{c=β}

▶ SHORTSIGHTED performs very well in practice, but is not
optimal



ALGORITHM 4: BRUTE-FORCE

▶ BRUTE-FORCE:
▶ Precompute expected matching size found by algorithm at

each “state”
▶ At each step, move to the state with highest expected

matching size

▶ BRUTE-FORCE is the optimal online algorithm
▶ Computationally very expensive, Θ(nq+1)



WHERE SHORTSIGHTED FAILS
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Figure: |α| = |β| = n
2

SHORTSIGHTED achieves ≈ 0.574946n, while BRUTE-FORCE
achieves at least ≈ 0.575597n in expectation (gap of ≥ .0006n)



COMPARISON BETWEEN SHORTSIGHTED AND

BRUTE-FORCE

Figure: SHORTSIGHTED represented by red curve, BRUTE-FORCE
by magenta. Yellow indicates a preference for class α, green for β in
SHORTSIGHTED.



True (Offline) Matching Numbers
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KNOWN RESULTS IN ERDŐS–RÉNYI CASE

Optimality

Theorem (Karp, Sipser)

On an Erdős–Rényi graph with
edge probability c

n , whp
Karp–Sipser constructs a
matching within o(n) of optimal.

Phase Transition

Theorem (Karp, Sipser)

On an Erdős–Rényi graph with
edge probability c

n , whp the
Karp–Sipser core has size
▶ o(n) if c < e
▶ Θ(n) if c > e



COMPARISONS TO SBM CASE

Optimality

▶ The Karp–Sipser is
optimal in some specific
cases, including the
equitable case, which has
the same matching
number as Erdős–Rényi .

▶ It is not optimal on
general SBM graphs

Phase Transition

▶ The Karp–Sipser core is
o(n) whenever average
degree is < e in all classes

▶ It is also o(n) for more
cases
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EQUITABLE CASE

Theorem
Karp–Sipser is asympotically optimal on equitable SBM graphs, and
finds whp a matching of size(

1 − x + ce−x + xce−x

2c

)
n + o(n)

where c is the average degree, and x is the smallest soln to x = ce−ce−x

Corollary

DUMB-GREEDY achieves tight competitive ratio c−ln(2−e−c)
(2c−x+ce−x+xce−x)

on equitable SBM graphs (minimum over c ≈ .837)
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Claim: The Karp–Sipser core is o(n) whenever the expected
degree is less than e for every class.

Proof Outline:
▶ Neighbourhood of a vertex in sparse SBM looks like a type

of random tree
▶ Probability of tree structures near the root allowing

Karp–Sipser to remove the root is bounded by the draw
probability of a game on the tree

▶ Draw probability → 0 iff there’s exactly one fixed point of
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OPEN QUESTIONS

▶ Is there a simpler characterization of the critical threshold?
▶ Is a label-aware version of Karp–Sipser optimal?
▶ Does SHORTSIGHTED always achieve competitive ratio

close to BRUTE-FORCE?
▶ Does there exist a linear-time algorithm with the same

competitive ratio as BRUTE-FORCE?



ACKNOWLEDGEMENTS

▶ Thanks to the organizers of SPUR for putting together
such a wonderful program! (And for matching us to an
interesting problem :) )

▶ Thanks to our mentors, Anna and Byron, for working with
us (and sitting through a lot of baffled chalkboard
rambling)

▶ Thanks to Elchanan Mossel for suggesting the problem
topic


