
6.S977 Project: Can SoS Prove Circuit Lower Bounds?

Brian Liu
brliu@mit.edu

Nathan Shefϐield
shefna@mit.edu

WilliamWang
wmwang@mit.edu

December 14, 2024

1 Introduction

A central problem in complexity theory is to show that SAT does not have polynomial‐size circuits — that is,
to show that NP ̸⊆ P/poly. This problem saw a lot of enthusiasm in the 80s, with work showing exponential
lower bounds against restricted classes of circuits (such asAC0 —i.e. constant‐depth arbitrary fan‐in circuits of
ANDs, ORs and NOTs, and AC0[⊕]— i.e. constant‐depth arbitrary fan‐in circuits of ANDs, ORs, NOTs and XORs).
However, by the early 90s the well seemed to have dried up: although there has been some progress since, ϐind‐
ing explicit lower bounds against many slightly larger classes of circuits appears hopelessly out of reach.

To a complexity theorist, the obvious question upon being stuck trying to solve something for 30 years is “is
there some reason this is a hard problem?”. And indeed, there have been a number of attempts at formalizing the
intuition that circuit lower bounds are inherently difϐicult to prove: for instance, the Razborov‐Rudich “natural
proofs” barrier conditionally ruling out lower bounds that are constructive for a large fraction of truth tables, or
results in “hardness magniϐication” showing that weak circuit lower bounds in fact imply stronger circuit lower
bounds. One especially concrete approach to formalizing the difϐiculty of circuit lower bounds, which we will
consider in this exposition, is to rule out some restricted form of proof. Speciϐically, one might be interested in
ruling out a non-uniform notion of a proof of e.g. NP ̸⊆ P/poly: given a particular propositional proof system,
one would like to show that proof system requires proofs of length super‐polynomial in n to show that SAT on
n‐bit inputs requires circuits of super‐polynomial size.

As this paper was written as the ϐinal project for a class on sum of squares, we will focus on the sum‐of‐
squares (a.k.a. SoS or Positivstellensatz) proof system. In Section 2, we explain a recent paper by Austrin and
Risse [AR23] which formulates the minimum circuit size problem as a system of low‐degree polynomial equali‐
ties, and shows that SoS requires high‐degree proofs to refute the existence of a small circuit for any function. In
Section 3, we then discuss whether this result can be extended to rule out sum‐of‐squares lower bounds against
smaller classes of circuits. In section Section 4, we consider feasible interpolation, a property of propositional
proof systems which is known to imply certain lower bounds, including (under some assumptions) one against
proving circuit lower bounds. We survey the paper of Hakoniemi that identiϐies a form of feasible interpolation
posessed by sumof squares [Hak20], whichwe notemay possibly provide an alternative route to (conditionally)
ruling out SoS proofs of lower bounds. Finally, in Section 5 we step beyond SoS, and ask whether any proposi‐
tional proof system can prove lower bounds against most functions. Here, we outline a meta‐complexity result
of Pich and Santhanam [PS19]: there exists some propositional proof system (with advice) such that no other
propositional proof system can disprove that that system gives short circuit lower‐bound proofs for most func‐
tions.

2 MCSP is hard for SoS

In this section, we provide a reformulation of work by Austrin and Risse [AR23] which shows that SoS needs
high degree in order to provide circuit size lower bounds. Speciϐically, we will show the following theorem:

Theorem 1. For all ϵ > 0, the exists d st: ∀n ∈ N, s ≥ nd, and any f : {0, 1}n → {0, 1}, SoS requires deg =
Ωϵ(s

1−ϵ) to refute the assertion that f has circuits of size≤ s.

1

As a sketch for how this proof will work, we have a classic result by Grigoriev [Gri01] that XOR‐CSPs require
high degrees to refute:

Theorem 2. For all n ∈ N, k, r = k(n), r(n), let G = ((U, V), E) be an (r, k, 2)-expander. Then ∀b ∈ {0, 1}|U |,
SoS requires degree Ω(r) to refute a satisfying assignment to the system⊕

v∈N(u)

xv = bu, ∀u ∈ U

We will ϐirst express MCSP via a polynomial system, and construct a reduction to an XOR‐CSP on an expander
such that SoS proofs are preserved through the reduction. In this way, lower bounds given by Theorem 2 can be
easily translated to MCSP.

2.1 Constructing a Polynomial System

We wish to encode the statement that f(x) has circuits of size ≤ s in terms of polynomials. So, we begin by
formulating a polynomial system whose solutions correspond to circuits of size s which compute f . Our poly‐
nomial system consists of two types of variables: structural variables, which determine the circuit itself, and
evaluation variables, which ensure that computation on the circuit is consistent. For simplicity, we will assume
that all variables are boolean, so for any variable x, we have the equation x2 = x in our system.

To deϐine the circuit, take a topological sorting of the gates, and label them from 1 to s. For each, gate u ∈ [s], we
have the three variables IsOr(u), IsAnd(u), IsNeg(u) and equation

IsOr(u) + IsAnd(u) + IsNeg(u) = 1, ∀u ∈ [s]

so every gate is given exactly 1 of 3 possible types. To ϐinish specifying the circuit, we also need to specify the
connections between gates, namely where the inputs for each gate come from. Each gate has≤ 2 inputs, and so
for each u ∈ [s], i ∈ {1, 2}, we have the following variables for the ith input of gate u: ϐirst, we specify where
the input came fromwith FromConst(u, i), FromInput(u, i), FromGate(u, i)which correspond to the input being
from a constant, from the input to the circuit, or from the output of another gate v < u. Each input corresponds
to exactly one of these cases, so we have

FromConst(u, i) + FromInput(u, i) + FromGate(u, i) = 1, ∀u ∈ [s], i ∈ {1, 2}

If the input is a constant, we specify its valuewith variable ConstVal(u, i). If the input is froman input, we specify
which index of the input with indicator variable InputIndex(u, i, j)where j ∈ [n]. This gives constraint

FromInput(u, i) ·

1−
n∑

j=1

InputIndex(u, i, j)

 = 0, ∀u ∈ [s], i ∈ {1, 2}

Finally, if the input is a gate, we specify which gate it came from with indicator GateIndex(u, i, v). Note that we
can only get output from v if v < u since the gates are topologically sorted, so we have

FromGate(u, i) ·

(
1−

u−1∑
v=1

GateIndex(u, i, v)

)
= 0

These variables and constraints completely specify circuits of size swith AND, OR, and NOT gates. Now, for eval‐
uation variables, on each inputα ∈ {0, 1}n, and each gate u ∈ [s], we deϐine variables Outα(u), Inα,1(u), Inα,2(u)
to be the output and inputs of gate u on input α. These values must be consistent with circuit structure, so we
must check that they compute the right things. For the output to be consistent with input, we have

IsNeg(u) · (Outα(u) + Inα,1(u)− 1) = 0, IsAnd(u) · (Outα(u)− Inα,1(u)Inα,2(u)) = 0,

IsOr(u) · (Outα(u)− (1− (1− Inα,1(u))(1− Inα,2(u)))) = 0

2

For the inputs to be consistent, theymust come fromwhere the wire structural variables say they come from, so

FromConst(u, i) · (Inα,i(u)− ConstVal(u, i)) = 0, FromInput(u, i) · InputIndex(u, i, j) · (Inα,i(u)− αj) = 0,

FromGate(u, i) · GateIndex(u, i, v) · (Inα,i(u)− Outα(v)) = 0

Finally, we wish for our circuit to compute f , so we specify that the outputs of gate smust be the correct values:

Outα(s) = f(α), ∀α ∈ {0, 1}n

Wenowhave a system of polynomials speciϐied onO(s)+O
((

s
2

))
+O(s2n) = O(s2n+s2) total variables which

corresponds exactly to circuits of size swhich compute f . We will denote this system as Circuits(f).

2.2 Polynomial Substitutions

Now that we have our polynomial system, we want to relate it to the XOR‐CSP so we can apply Theorem 2. We
ϐirst develop some theory on polynomial substitutions.

Deϐinition 2.1. A polynomial substitution ρ of degree ≤ k is deϔined by a mapping ρ : {x1, . . . , xn} → R≥k[X]
which sends variables to multivariate polynomials of bounded degree.

Deϐinition 2.2. Given polynomial system P and substitution ρ on the same set of variables, the restriction P|ρ is
deϔined by substituting all variables xi in P with ρ(xi).

With these deϐinitions, sum of squares proofs are preserved under restriction:

Fact 2.3. IfP has a degree d SoS refutation, and ρ is a polynomial substitution of degree≤ k, thenP|ρ has a degree
dk SoS refutation.

The above is clear since we can get a refutation for the restricted system by just substituting variables in the
SoS refutation ofP with ρ. So, if we have a low‐degree polynomial substitution whose restriction on Circuits(f)
produces a XOR‐CSP‐like instance, then we can ϐinish by Theorem 2.

2.3 Constructing the Restriction

We want to somehow encode an expander into our circuit to apply Grigoriev’s result. In order to do this, the
exapnder should have some succinct circuit representation so it can be efϐiciently put into our construction.
Luckily, such expanders do exist, by a result of Guruswami, Umans and Vadhan [GUV09]:

Fact 2.4. For all γ > 0,M ∈ N, r ≤M , ϵ > 0, there is anN ≤ d2r1+γ such that we have (r, d, (1− ϵ)d) expander
G = ((U, V), E) with |U | = M, |V | = N and d = O

(
((logM log r)/ϵ)1+1/γ

)
such that the neighbor relation

U × V → {0, 1} is computable by a circuit of size

d(poly(logM + log d) + 2 logN + 1)

Fix G = ((U, V), E) to be an (r, k, 2) expander guaranteed by Fact 2.4 with |U | = 2n, |V | = m. We will now
construct our substitution to restrict Circuits(f) to an XOR‐CSP onG. First, restrict the ϐirstm gates to be ORs.
For each i ∈ [m], set ϐirst input to constant 0 and keep the second unset as some variable yi ∈ {0, 1}. The output
of the ith OR gate should therefore be yi as well, and we will interchangeably refer to this gate as yi for ease of
notation. These unset constants will be the only unset structural variables in our construction, and everything
else will follow a rigid, predetermined structure.

By Fact 2.4, for each iwe can construct selector circuit Seli of size

k(poly(log 2n + log k) + 2 logm+ 1) = O(k · poly(n+ log k) + logm) = poly(n, k)

such that Seli(α) = 1 iff (α, i) ∈ E. (Here, logm = poly(n, k) since m ≤ k2(2n)1+γ by the bounds in Fact
2.4.) Hardcode these selector circuits into our restriction and AND Seli and yi for each i ∈ m. Finally, XOR the
resultingm values to produce our completed restricted circuit.

3

By construction, on input α, Seli(α)∧ yi is yi if i ∈ N(α) and it is 0 otherwise, so the circuit computes the quan‐
tity

⊕
i∈N(α) yi, which is exactly the form of an XOR‐CSP.

Let’s now see how to formally specify the restriction from general circuits to this very speciϐic type of circuit.
The goal is to be able to replace all variables in Circuits(f) to polynomials in terms of the {y1, . . . , ym} such that
the resulting system is consistent with circuits of this form. First, note that all structural variables besides the
unset constants are ϐixed, so they can bemapped to constants, meaningwe only care about evaluation variables.
The selector circuits are all ϐixed, so we map all the corresponding evaluation variables to constants. Similarly,
all the evaluation variables corresponding to the yi gates or the AND are either constants or yi, so those are dealt
with easily.

For all the remaining evaluation variables in the circuit, which are entirely within the XOR, note that for ϐixed
α all of these variables only rely on k of the yi. Any function over k boolean variables can be expressed as a
degree‐k multilinear polynomial via its Fourier Transform, so we can map all evaluation variables to their re‐
spective polynomials. This sufϐices for specifying our polynomial substitution.

To write out the resulting restricted systemwould involve taking each polynomial axiomwe deϐined previously
and use our substitution, which doesn’t sound too promising, since XOR‐CSPs don’t have that many axioms. In
fact, we will show that our restricted polynomial system is a lot simpler than one might expect, and exactly
follows the form of the XOR‐CSP:

Lemma 2.5. Our restricted polynomial system can be expressed with the following axioms: ⊕
i∈N(α)

yi = f(x)

∣∣∣∣α ∈ {0, 1}n
 ∪ {y2i = yi}

Proof. First, note that in Circuits(f) we have that the yi are boolean which gives the second set of axioms, and
Outs(α) is mapped to the degree‐k multilinear XOR polynomial, which gives the ϐirst set of axioms. It sufϐices to
show that all remaining axioms are encapsulated by the above. We ϐirst prove a fact about boolean functions:

Fact 2.6. If polynomial P (x1, . . . , xn) satisϔies P (x1, . . . , xn) = 0 for all (xi) ∈ {0, 1}n, then we can write

P (x1, . . . , xn) =

n∑
i=1

(x2i − xi)Pi(x1, . . . , xn)

Proof. We will prove this with induction on n, where the base case of n = 1 is clear, since if P (0) = P (1) = 0,
then x(x− 1)|P (x). For the inductive step, we do polynomial division wrt x2n − xn to get

P (x1, . . . , xn) = (x2n − xn)Pn(x1, . . . , xn−1) + xnQ(x1, . . . , xn−1) +R(x1, . . . , xn−1)

Plugging in xn = 0 shows that R is uniformly 0 over (x1, . . . , xn−1) ∈ {0, 1}n−1, and then plugging in xn = 1
showsQ+R = Q is also uniformly 0 over (x1, . . . , xn−1) ∈ {0, 1}n−1. So, by inductive hypothesis,

P (x1, . . . , xn) = (x2n − xn)Pn(x1, . . . , xn−1) +

n−1∑
i=1

(x2i − xi)(xnQi(x1, . . . , xn−1) +Ri(x1, . . . , xn−1))

which sufϐices for the proof.

4

This fact tells us that if a polynomial equality holds true over (y1, . . . , ym) ∈ {0, 1}m, then it can be derived
via SoS from the boolean axioms on yi, and therefore does not need to be included in our system. But, by con‐
struction, we have that any setting of the yi over {0, 1}m will produce a valid, consistent circuit, meaning that
all of our structural axioms, intermediate evaluation axioms for consistency, and boolean axioms should hold
true. Therefore, all of these axioms can be derived from the boolean axioms on the yi, and the listed axioms are
indeed all we need to fully specify the restricted polynomial system, as desired.

Indeed, Lemma 2.5 shows that our restricted polynomial system exactly corresponds with the polynomial sys‐
tem of XOR‐CSP, and therefore Theorem 2 shows that the restricted system requires SoS refutation of degree
Ω(r). The restriction was of degree≤ k, so Circuits(f) requires SoS refutation of degree Ω(r/k). What remains
to be done to prove Theorem 1 is to maximize r/k while ensuring that our construction uses at most s gates.

In total, the construction uses m · poly(n, k) ≤ O(mnC1kC2−2) ≤ O(r1+γnC1kC2) gates for some C1, C2. We
have

k = O((n log r)1+1/γ) ≤ O(n2+2/γ)

so we just need that
O
(
r1+γnC3+2C2/γ

)
≤ s

Now, if we just deϐine γ sufϐiciently small such that 1
1+γ < 1− ϵ

2 for the ϵ deϐined in Theorem 1, we get that we
can set r = s1−ϵ/2 · n−C1(γ), k ≤ nC2(γ), so when s ≥ nd for sufϐiciently large d, we require SoS refutation of
degree

Ω(r/k) = Ω
(
s1−ϵ/2n−C1(γ)−C2(γ)

)
≥ Ω

(
s1−ϵ

)
as desired.

3 Lower bounds against restricted circuit classes

Perhaps the natural question one is left with after that result is “is this really saying something about why
new lower bounds are difϐicult, or just about why SoS is weak?”. One way of asking this question is to con‐
sider whether SoS can prove circuit lower bounds if we restrict the class of circuits to one in which we do know
unconditional lower bounds against explicit functions. If so, then the result of Section 2 would correspond to
identifying a large class ofmethodswhich are known to be useful in some restricted settings, but provably not in
general. If not, then perhaps it’s instead telling us that SoS is just fundamentally not good at reasoning about cir‐
cuits (at least in the encodingwe’ve chosen). In this setting, we’ll prove a couple ofminor results in the direction
of understanding this question, and brieϐly discuss potential ways to proceed.

3.1 Polynomial systems encoding weaker circuit classes

In order to talk about whether SoS can prove lower bounds against some circuit class C, we’ll need a different
system of polynomial equalities than the one presented in Section 2, since we’ll want the structural variables to
be forced to describe a circuit belonging to C. Let’s note here a couple of modiϐications one could make.

i) Boundeddepth: To represent a circuitwith boundeddepth, there are a couple options for how toproceed.
If we’re interested in circuits of only constant depth, as we will be in this section, the simplest thing to
do would just be to have each gate assigned a layer of the circuit initially, and only include the variables
FromGate(u, i, v) when u appears in an later layer than v. However, in order to encode any circuit of size
s and depth d, this would require us to have s gate variables at each layer, since it’s possible that a circuit
has most of its gates in a single layer. So this has multiplied the number of gate variables by d—note that
if we care about this factor in the size, we should now also include a new Boolean variable for each gate
specifyingwhether that gate is present in the circuit, with the constraint that the sum of all those variables
is s. All of this has only increased the number of gate variables in our system by a constant if d is constant,
however if d is largerwemightwant a different encoding. For instance, one could imagine giving each gate
an additional d associated Boolean variables with sum 1, serving as the indicator of the layer it’s on, and
then enforcing the constraints that no gate’s IN wire is connected to a gate at a greater than or equal layer.

5

ii) Modiϐied gate set: One modiϐication one might want to make is to introduce different gates, such as
XOR/parity gates. For a gate that takes a constant number of inputs, this is easy to do: note that we can
just add e.g. an IsXor variable for each gate, and then since the gate only acts over a constant number of
inputs we can still express the function it computes as a constant‐degree polynomial as we did for AND,
OR and NEG, which will result in a constant‐degree system of polynomials.

iii) Arbitrary fan-in: However, the above will not work if we want to allow our gates to have superconstant
fan‐in. In the case of superconstant fan‐in, even AND or OR have high degree in their inputs, so the most
natural extension of the system in Section 2 doesn’t really make sense. A workaround we propose (there
may be better ones known) is to represent an arbitrary‐fan gate (either AND, OR, or ⊕) as a collection
of O(s) sub‐gates with wires hardwired to form a binary tree and constrained to all compute the same
operation. We introduce evaluation variables in the same way we did before for each of these sub‐gates,
so that the circuit still has to evaluate the sameway. In other words, the workaround is just to increase the
size anddepth of the circuit, but then groupand restrict the gates so that they’re actually just implementing
a small number and depth of arbitrary‐fan in gates.

3.2 SoS can’t prove exponential lower bounds against AC0[⊕]

The approach of Section 2 seemed pretty general: we just took our initial system, substituted some structural
variables with constants to restrict the circuit to a special form, and then noted that the evaluation variables
could be substituted upwards to yield a polynomial corresponding to a hard CSP. In particular, note that the only
propertywe need fromour circuit class is thatwe can restrict it to something computing the particular functions
we needed. Recalling that AC0[⊕] is the class of constant‐depth circuits with arbitrary fan‐in AND/OR/⊕ gates,
we can simply plug in known results to get the following proposition:

Proposition 3.1. There exists a depth d such that, for any constant ϵ > 0, any f : {0, 1}n → {0, 1}, and any
s > 2n

ϵ

, SoS requires degree 2Ω(nϵ) to refute that f has depth-d, size-s AC0[⊕] circuits.

Proof. By a result of Oliveira, Santhanam and Tell ([OST18], Theorem 4.5 in the ECCC preprint or Theorem 9 in
the conference version), for sufϐiciently large constant d there exists for every ϵ a

(
2Ω(nϵ), poly(n), 2

)
‐expander

G =
(
{0, 1}n,

[
2n

ϵ]
, E
)
with neighbour relation computable by a size‐2O(nϵ) depth‐d AC0[⊕] circuit1. So, if we

build a circuit encoding anXOR‐CSP instance on this graphwith the same approach aswedid in Section 2, wewill
need 2n

ϵ

selectors, each ofwhich of size 2O(nϵ), giving a total circuit size s = 2O(nϵ). Note that the depth required
is only d + 2, since each selector is just ORed with one of the yi, and then fed into the ϐinal ⊕ gate. Once we’ve
hardwired structural variables to restrict to this circuit, applying a poly(n)‐degree substitution on the evaluation
variables produces the polynomial system corresponding to an XOR‐CSP with condition values given by f on
graphG, which requires SoS degree 2Ω(nϵ) to refute. So, SoS requires degree at least 2Ω(nϵ)/poly(n) = 2Ω(nϵ) to
refute the existence of 2n

ϵ

‐size AC0[⊕] circuits for any function f .

This is perhaps rather disappointing, because we do have techniques to prove exponential AC0[⊕] lower
bounds against very explicit functions: in fact, even for MOD‐3 function, i.e. computing whether the sum of the
bits in the input is a multiple of 3. So it seems what we’ve learned is that SoS fundamentally not capable of im‐
plementing these techniques. The next question is: can SoS implement any interesting circuit lower bound tech‐
niques? Or even relatively uninteresting circuit lower bound techniques? AC0[⊕] is pretty simple, but there’s
still room to look at simpler circuit classes.

3.3 What can we say about even weaker classes that AC0[⊕]

Perhaps the weakest class which can reasonably be said to do anything at all2 is NC0: constant‐depth circuits
with fan-in 2. Note that we have a trivial circuit lower bound against NC0: no matter the size, the output of any
NC0 circuit of depth d can only depend on at most 2d bits of the input, so any function which depends on more

1They did not state the theorem with these parameters so if you go to the original paper you will need to set variables appropriately.
It took me an embarrassingly long time to ϐigure out how to match up the parameters here though (not sure how long but the units were
hours) so I don’t recommend doing it — unless you don’t trust me, which might be a good call.

2And indeed probably many reasonable people would hold that this class is not even at the level of doing anything at all.

6

bits than that has no circuit of that depth. However, it’s not immediately obvious3 that SoS is able to make this
argument given the polynomial system we’re using to encode the circuit size problem. Austrin and Risse do
show that, for general circuits, any f with no size‐s circuit has an SoS proof of this fact with degree O(s). But
their proof relies on deriving a polynomial of large enough degree that themonomials correspond exactly to the
valid size‐s circuits, and here we would like to do something better. It would be quite a let down if it turned out
SoS still needed poly(s) size even to refute existence of size‐sNC0 circuits, because then the extra size ought not
to help at all.

Fortunately, not all hope is lost! SoS does prove these NC0 lower bounds in constant‐degree.

Proposition 3.2. For any d, if f : {0, 1}n → {0, 1} doesn’t have depth-d NC0 circuits, then there exists a degree-
2O(d) SoS refutation of the corresponding polynomial system for any s.

Proof. Suppose there exists no such SoS refutation. Then, for any constant C , by duality there exists a degree‐
(C · 2d) pseudodistribution over Boolean assignments to the variables that satisϐies all constraints. We will
generate the relevant portion of the circuit by choosing variables one at a time to condition on. Speciϐically,
starting with the output gate we’ll look at the local distribution for IsOr, IsAnd, and IsNeg. At least one of these
must have nonzero probability, so we’ll condition on that value. Similarly, we’ll look at the all the possible inputs
to the left input — there must be at least one with nonzero probability, so we’ll condition on that. Once we’ve
got concrete values pinned down for both of the input gates, we move on and do the same for each of them.
Overall, if it’s a valid pseudodistribution, we should always have an option with nonzero probability, and since
each input gate must be at a lower layer by deϐinition this means that we will only have to condition on O(2d)
variables before we’ve determined the entire circuit.

Now, since this circuit does not in fact compute f , there is some particular input x for which it does not
correctly compute f(x). We can now in degree O(2d) derive all of the evaluation variables for input x, which
will ϐind a contradiction. So, we cannot in fact have started with a valid pseudodistribution.

If we want to understand the limits of what circuit lower bounds SoS can prove, there’s a couple of classes
we could now look at in‐between NC0 and AC0[⊕]. One slightly unusual option would be NC0[⊕]— that is, the
class of constant‐depth circuits with fan‐in 2 AND and OR gates, and arbitrary fan‐in ⊕ gates. These circuits
compute low‐degree functions over F2, so it’s pretty easy to show that they can’t compute something like the
AND of all inputs. However, this reasoning about F2 seems like the sort of thing that SoS might have trouble
with. It’s conceivable that one might be able to rule this out with a construction analogous to what we did for
AC0[⊕], but note that to do this we would need to be able to compute the neighbour relation of some appropri‐
ate unbalanced expander in NC0[⊕], which it is not currently known how to do. We do know that it’s possible
to compute the neighbour function of some balanced expander in NC0 [VW18], but it’s unclear if even with un‐
bounded parity gates one can do this for unbalanced expanders. Oliviera, Santhanam and Tell have formulated
this as an assumption relevant for security of some particular cryptographic scheme, so there has been at least
some interest [OST18]. Note that if you could get low‐degree SoS proofs of exponential circuit lower bounds
against NC0[⊕] this would therefore rule out that assumption.

Another somewhat more traditional class to consider in‐between NC0 and AC0[⊕]would be AC0: constant‐
depth arbitrary fan‐in circuits with AND gates and OR gates, but no ⊕. Observe that we know that AC0 can’t
compute the parity of n bits with 2o(n) size— so, in particular, this means that the reductionwe’ve been using to
XOR‐CSP will deϐinitely not be implementable in AC0. On the other side, we could ask whether known explicit
lower bounds againstAC0 seem like they could be possible to translate into low‐degree SoS. There are a number
of different approaches to showing lower bounds againstAC0, but the primary two are probablistic polynomials
(i.e. show by a probablistic argument that anyAC0 circuit has output well approximated by a certain low‐degree
polynomial over F2) or switching lemmas (i.e. show that a DNF under a random restriction is likely to have a
small decision tree, and use this to swap a pair of layers from ORs of ANDs to ANDs of ORs and hence repeatedly
shrink the circuit depth). The former of these approaches is almost certainly doomed in SoS‐land: the exact
same arguments work to show exponential lower bounds against AC0[⊕], and we know these should not be

3Or wasn’t to me, at least. If you told me that actually this ought to have been obvious, I would believe you. Also if you told me my proof
was wrong and it still wasn’t obvious, I would unfortunately probably still believe you.

7

possible. For the latter, we don’t currently have a formal way of ruling out, but the path ahead seems potentially
fraught. The proof relies pretty heavily on having a particular circuit in front of you and being able to analyze
how things simplify under random restrictions, which might be hard to try to capture when all you have is a
pseudodistribution over circuits4.

4 Feasible interpolation

In this section, wewill brieϐly discuss the property of feasible interpolation. A propositional proof system is said
to satisfy a feasible interpolation principle if, for any formulas ϕ(x, z) and ψ(y, z) overlapping only on variables
z, given a disproof ofϕ(x, z)∧ψ(y, z) and a particular assignment z′ to the z variables, it is possible in polynomial
time to compute a disproof of either ϕ(x, z′) or ϕ(y, z′).

4.1 Feasible interpolation and the provability of circuit lower bounds

The reason this is at all pertinent to the discussion at hand is that we know in a number of cases lower bounds
on propositional proof complexity for certain statements against any propositional proof system satisfying a
feasible interpolation property. In particular, something of the form “proof systems with feasible interpolations
probably can’t prove any lower bounds against general circuits” seems to be known. A paperwhere Steve Rudich
states the following:

Theorem 3 (Rudich [Rud97]; paraphrased). If there exist pseudorandom generators computable in P/poly and
fooling circuits of size 2n

ϵ

, then any “reasonable” propositional proof system satisfying feasible interpolation cannot
prove a quasipolynomial circuit lower bound against any boolean function.

However, Rudich does not give a formal deϐinition of what “reasonable” means, except to say that it entails
properties “common to all studied propositional proof systems”, and attributes the proof of this theorem to
Razborov in [Raz95]. The results in [Raz95] do not explicitly make any statements about general propositional
proof systems — rather, Razborov rules out proofs of circuit lower bounds in various particular theories of
bounded arithmetic. The authors of this project have unfortunately not been able to understand how these
results translate, and so will not be able to give a formal deϐinition of what “reasonable” means at the moment
— however, if one takes Rudich on faith that the statement of Theorem 3 does follow from Razborov’s results,
and assumes that sum‐of‐squares presumably satisϐies this “reasonableness” condition, then this would give an
alternate approach to (conditionally) establishing similar results to those shown in Section 2: simply prove a
feasible interpolation theorem for SoS. Of course, we don’t really need to prove such a statement conditionally,
given that that the results of Austrin and Risse give it unconditionally, but this implication could perhaps be
interesting for the purposes of showing variations of the result. For instance, maybe this gives us an alternative
route towards ruling out lower bounds against other circuit classes. (Although we note that this would still
likely require pretty new arguments — for instance, Razborov’s paper uses his techniques against theories of
bounded arithmetic which are capable of proving lower bounds againstAC0, so his approach shouldn’t be black‐
box capable of disproving AC0 lower bounds.)

4.2 Feasible interpolation for SoS

For the remainder of this section, we’ll sketch the result of Hakoniemi [Hak20] that SoS does satisfy a notion of
feasible interpolation. Speciϐically, they show the following:

Theorem 4. For any sets P (x, z) and Q(y, z) of multilinear polynomials, there is a polynomial-time (in the bit-
complexity of the input proof) algorithm that takes an SoS refutation of P (x, z) ∪Q(y, z) over the Boolean hyper-
cube and an assignment z′, and outputs either an SoS refutation of P (x, z′) or an SoS refutation ofQ(y, z′).

Theproof follows twosteps: ϐirst, show that apolynomial‐sized refutation exists for eitherP (x, z′)orQ(y, z′),
and then show that it can be found using the ellipsoid algorithm. The basic outline of the argument is as follows

4However I don’t have great intuition for these things yet I think, so it’s possible that you, the reader, are the better judge. If you, the
reader, currently happen to be Sam Hopkins, then it is not just possible but in fact 100% true. All I know is that I couldn’t ϐigure out how to
say anything.

8

(more care than we present here is needed to actually ensure that coefϐicients stay bounded).

Let’s ϐix and ignore the z variables. Observe that an SoS refutation of P ∪Q consists of a polynomial equality
of the form ∑

i∈[k]

r2i +
∑

q∈Q∪Q

tqq = −1

for some polynomials ri, ti. Consider the set S of all monomials appearing in any of the ri and ti, and look at the
“projections” Sx and Sy consisting of terms involving only x variables and only y variables, respectively. Wewill
show that we can get a refutation for one of the two disjuncts using only those monomials. That is, we have the
following:

Lemma 4.1. If there is an SoS refutation of P (x) ∪ Q(y) with monomials S and coefϔicients of bounded bit-
complexity, then there exists either an SoS refutation with bounded coefϔicients for P (x) using only monomials
Sx, or forQ(y) using only monomials Sy .

Proof. The ϐirst thing to observe is that, when we restrict the set of monomials an SoS proof is allowed to use,
there still exists a notion of duality with pseudoexpectations. That is, you can deϐine a pseudoexpectation over
monomial set S to be a linear map from the degree‐2 polynomials over S — that is, polynomials that can be
written as a weighted sums of products of two monomials from S — to R. We’ll ask this to act like a degree‐2
pseudoexpectation over variable set S (i.e. it’s a pseudoexpectation deϐined over these monomials as opposed
to the actual variables). That is, we require Ẽ[1] = 1, Ẽ[m2] ≥ 0 for anym that’s a linear combination of mono‐
mials from S, and that Ẽ[mq] = 0 for anym ∈ S and q ∈ P ∪ Q. With this deϐinition, we again get duality: for
any P ∪Q and any set S of monomials, either there exists such a pseudoexpectation for S, or there exists an SoS
proof using only monomials S. (And, if you want an SoS proof with small coefϐicients, this corresponds to just
relaxing the Ẽ[mq] = 0 condition to Ẽ[mq] ≤ ϵ.)

So, if we assume for contradiction that we have neither an SoS refutation for P over Sx nor an SoS refutation
forQ over Sy , we get corresponding pseudoexpectations Ẽx and Ẽy , respectively. We’ll now deϐine a new pseu‐
doexpectation Ẽ over all ofS, by letting Ẽ[m] = Ẽx[mx] ·Ẽy[my], where bymx andmy we denote the projections
onto Sx and Sy respectively. Observe that this satisϐies Ẽ[1] = 1, and that Ẽ[mq] = 0 form ∈ S, p ∈ P because
we’ll have Ẽx[mxpx] = 0 (similarly for Q). To get that Ẽ[m2] ≥ 0 for allm ∈ S, we can just write in monomial
basis and then expand out the sum,whichwill allow applying positive semi‐deϐiniteness of Ẽx and Ẽy separately.
But now this pseudoexpectation contradicts our assumption that P (x)∪Q(x) had an SoS refutation over S.

Proof of Theorem 4. Just as howwe normally ϐind low‐degree SoS proofs efϐiciently, observe that the set of pseu‐
doexpectations over S satisfying constraints P ∪Q over the Boolean hypercube is convex, and so we can ϐind a
feasible point if one exists using the ellipsoid algorithm.

5 Circuit lower bounds in other proof systems

We’ve seen in Section 2 that SoS requires large degree to prove lower bounds against general circuits for any
function, and then in Section 4 that perhaps SoS’s “feasible interpolation” property gives an explanation for why
this should hold. Now, let’s step beyond SoS and ask whether these sorts of circuit lower bounds are inherently
hard for propositional proof systems more generally, even those which do not possess a feasible interpolation
property. Speciϐically, we’ll be covering a result of Pich and Santhanam [PS19] which, while not speciϐically
about sum of squares, is nevertheless sufϐiciently delightful that we didn’t think that singular deϐiciency should
be enough to preclude inclusion.

If we’re allowing sufϐiciently general propositional proof systems, we probably shouldn’t expect something
so strong as ruling out circuit lower bounds for all functions, but maybe we can rule out circuit lower bounds
formost functions. Rudich has conjectured this to be the case, even if the proof system is allowed to have some
nonuniform advice:

9

Deϐinition 5.1. A propositional proof system is a polynomial-time computable function that takes in a Boolean
formulaϕ and a stringπ representing a proof and outputswhether or not the proof is valid, such that the statements
with valid proofs are exactly the tautologies. A propositional proof systemwithadviceadditionally allows the proof
veriϔier to depend on a polynomial-length ϔixed advice string ϔixed for each input length.

Conjecture 5.2 (Rudich’s conjecture). For any propositional proof system R with advice, for most (i.e. all but a
negligible — less than |f |−ω(1) — fraction of) inputs f ,R requires proofs of super-polynomial length to show that
f requires circuits of super-polynomial size.

Here, we’re using a propositional encoding of the question of whether a circuit exists computing a given
truth table — the exact form of the encoding doesn’t particularly matter; it can be taken as anything roughly
analogous to the polynomial system we presented in Section 2. For a function f : {0, 1}n → {0, 1}, we’ll denote
by “HasCircuit(f, s)” the proposition encoding that f has a circuit of size s. For a propositional proof system R
and a proposition ϕ, we can similarly write “HasProof(R, ϕ, s)” to denote the proposition encoding that R has
a proof of ϕ of size s. The main result of Pich and Santhanam [PS19] is the unconditional result that Rudich’s
conjecture itself doesnot have short proofs in anypropositional proof systemS. That is, they show the following:

Theorem 5. There exists a constant c and a propositional proof systemRwith advice, such that any propositional
proof system S with advice S lacks polynomial-size proofs of ¬HasProof (R,¬HasCircuit(f, nc), 2n) for all but a
negligible fraction of functions f : {0, 1}n → n.

Rudich’s conjecture would hold that ¬HasProof (R,¬HasCircuit(f, nc), 2n) is a tautology for the vast major‐
ity of f . However, Theorem 5 tells us that nevertheless, for the vast majority of f , your favourite propositional
proof system fails to prove this tautology.

If Rudich’s conjecture is false, Theorem 5 is not so surprising: of course S shouldn’t be able to prove these
statements if they’re not even truemost of the time. Theorem5 is not quite immediate from falsehoodofRudich’s
conjecture, but it’s pretty close, and this is deϐinitely not the interesting case. Themore exciting case is if Rudich’s
conjecture is true. In this case, the idea will be to use the statement of Rudich’s conjecture to get a hitting set
against nondeterministic circuits, and thendesign aproof systemRwith “planted”proofs of circuit lowerbounds
corresponding to the elements of that hitting set. First, recall the deϐinition of a hitting set, stated here speciϐi‐
cally for nondeterministic circuits:

Deϐinition 5.3. A set HN ⊆ {0, 1}N is an ϵ-hitting set against size-s nondeterministic circuits if any nondeter-
ministic circuit of size s which accepts at least an ϵ fraction of {0, 1}N accepts at least one element ofHN .

Note that Rudich’s theorem implies (and is roughly equivalent to) the following statement:

Conjecture 5.4 (Rudich’s conjecture, equivalent form). There exists a c such that for any constant k, the set of
truth tables of size-nc circuits is a (1/(2n)k)-hitting set against size-(2n)k nondeterministic circuits.

Proof of Conjecture 5.2 =⇒ Conjecture 5.4. Suppose we had a nondeterministic circuitM on N ‐bit inputs for
N = 2n, such thatM accepted at least a 1/Nk fraction of inputs, but didn’t accept the truth table of any circuit of
size nc. SinceM never accepts the truth table of a circuit of size nc, we could get a sound proof system by taking
your favourite propositional proof system, and then gluing on to it a subroutine that says “if the proposition
you’re trying to prove is of the form ¬HasCircuit(f, nc), also try treating the proof as input toM and accept the
proof ifM accepts”. But now this proof system has polynomial‐size proofs of¬HasCircuit(f, nc) for a 1/poly(N)
fraction of f .

We will use this hitting set to design a tricky proof systemR.

Proof of Theorem 5. We’ll start by assuming that Rudich’s conjecture is true; we can handle the case where
Rudich’s conjecture is false at the end. By Conjecture 5.4, we therefore know that the setHN of truth tables of
nc‐size circuits on n‐bit inputs is a (1/Nk)‐hitting set for size‐Nk nondeterministic circuits for every k (where
we’re again denotingN = 2n). Let’s let zN ∈ {0, 1}N denote the truth table of some function {0, 1}n → {0, 1}
withmaximal Boolean complexity. We claim thatH ′ = {x⊕zN | x ∈ H} is also a (1/Nk)‐hitting set for size‐Nk

nondeterministic circuits — this is because given a circuit breaking the hitting property of H ′, we could get a

10

circuit breaking the hitting property ofH just byhardcoding in zN andhaving the circuit ϐlip the appropriate bits.

Now, we’ll use H ′ to design a proof system R. R will consist of your favourite propositional proof system,
except that if the proposition to be proved is of the form ¬HasCircuit(f, nc), and the proof consists of a circuit
of size nc, it will additionally check whether f ⊕ tt = zN , where tt is the truth table of that circuit, and accept if
so. First, note that this veriϐication can still be done in polynomial size: we just need to hardcode zN , and then
do nc · 2n work to compute the truth table. Also, note that we haven’t harmed soundness of the proof system,
since if f ⊕ tt = zN it must be the case that f requires circuits of size much larger than nc (otherwise, we could
get a small circuit for zN by taking the XOR of a circuit for f and the circuit computing tt). Finally, observe that
R has small proofs — in fact, proofs of size nc ≪ N — for ¬HasCircuit(f, nc)whenever f ∈ H ′.

Let’s ϐix a new propositional proof system S, and assume for contradiction that S has poly‐size proofs of
¬HasProof(R,¬HasCircuit(f, nc), N) on at least a 1/Nk fraction of f , for some constant k. But now, consider the
nondeterministic circuitwhich, on inputf , guesses apoly‐sizedS‐proof of¬HasProof(R,¬HasCircuit(f, nc), N),
runs it through the S‐veriϐier, and accepts if the proof veriϐies. Since we have a poly‐size veriϐier and are guess‐
ing a poly‐size proof, this nondeterministic circuit can be implemented in timeNd for some constant d. Observe
that this circuit will accept at least a 1/Nk fraction of all f , but that by soundness of S it will never accept any
f for which R has a size‐N proof of ¬HasCircuit(f, nc). But this is a contradiction: this circuit must accept an
element ofH ′ becausewe showedH ′ is a (1/Nk)‐hitting set for nondeterministic size‐Nd circuits, but it cannot
accept any element ofH ′ because they all have shortR‐proofs of ¬HasCircuit(f, nc).

The ϐinal case to consider is that Rudich’s conjecture is false. This gives us for any d a proof system R with
advice that has Nk‐size proofs of ¬HasCircuit(f, nd) for a N−k fraction of all f . All that remains is to boost
this to a proof systemR′ with poly‐size proofs of ¬HasCircuit(f, nc) on all but a negligible fraction of f — then,
no proof system S can prove ¬HasProof(R,¬HasCircuit(f, nc), N) more than a negligible fraction of the time
simply because ¬HasProof(R,¬HasCircuit(f, nc), N) is only true a negligible fraction of the time. To do this
boosting, we just haveR′ split the input truth table intoN1−1/3k equal‐sized chunks, and then accept if its given
R‐proof ruling out circuits of size nd for any given chunk, since this will also then rule out small circuits for the
whole function. If we choose d = 100k100c, then our guarantees onR tell us that we’ll have such a proof for any
given chunk with probability at least 1 −N−1/3, so since the probabilities for each chunk are independent our

overall probability of having a proof is at least 1−
(
1− 1

N1/3

)N2/3

= 1− e−Ω(N1/3) = 1−N−ω(1).

References

[AR23] Per Austrin and Kilian Risse. “Sum‐Of‐Squares Lower Bounds for theMinimum Circuit Size Problem”.
In: 38th Computational Complexity Conference (CCC 2023). Schloss Dagstuhl‐Leibniz‐Zentrum für In‐
formatik. 2023.

[Gri01] Dima Grigoriev. “Linear lower bound on degrees of Positivstellensatz calculus proofs for the parity”.
In: Theoretical Computer Science 259.1‐2 (2001), pp. 613–622.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. “Unbalanced expanders and random‐
ness extractors from Parvaresh–Vardy codes”. In: Journal of the ACM (JACM) 56.4 (2009), pp. 1–34.

[Hak20] Tuomas Hakoniemi. “Feasible Interpolation for Polynomial Calculus and Sums‐Of‐Squares”. In: 47th
International Colloquium on Automata, Languages, and Programming (ICALP 2020). Ed. by Artur Czu‐
maj, Anuj Dawar, and Emanuela Merelli. Vol. 168. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz‐Zentrum für Informatik, 2020, 63:1–63:14.
ISBN: 978‐3‐95977‐138‐2. DOI: 10.4230/LIPIcs.ICALP.2020.63. URL: https://drops.dagstuhl.
de/entities/document/10.4230/LIPIcs.ICALP.2020.63.

[OST18] I Oliveira, Rahul Santhanam, and Roei Tell. “Expander‐based cryptography meets natural proofs”. In:
Innovations in Theoretical Computer Science (ITCS) 124 (2018).

[PS19] Jan Pich and Rahul Santhanam. “Why are Proof Complexity Lower Bounds Hard?” In: 2019 IEEE 60th
Annual Symposium on Foundations of Computer Science (FOCS). 2019, pp. 1305–1324. DOI: 10.1109/
FOCS.2019.00080.

11

https://doi.org/10.4230/LIPIcs.ICALP.2020.63
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.63
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.63
https://doi.org/10.1109/FOCS.2019.00080
https://doi.org/10.1109/FOCS.2019.00080

[Raz95] AlexanderARazborov. “Unprovability of lower bounds on circuit size in certain fragments of bounded
arithmetic”. In: Izvestiya: mathematics 59.1 (1995), p. 205.

[Rud97] Steven Rudich. “Super‐bits, demi‐bits, and NP/qpoly‐natural proofs”. In: International Workshop on
Randomization and Approximation Techniques in Computer Science. Springer. 1997, pp. 85–93.

[VW18] EmanueleViola andAviWigderson. “Local expanders”. In: computational complexity27 (2018), pp. 225–
244.

12

	Introduction
	MCSP is hard for SoS
	Constructing a Polynomial System
	Polynomial Substitutions
	Constructing the Restriction

	Lower bounds against restricted circuit classes
	Polynomial systems encoding weaker circuit classes
	SoS can't prove exponential lower bounds against AC0[]
	What can we say about even weaker classes that AC0[]

	Feasible interpolation
	Feasible interpolation and the provability of circuit lower bounds
	Feasible interpolation for SoS

	Circuit lower bounds in other proof systems

