Testing Permutation Avoidance
in the Bounded Range Setting

Nathan S. Sheffield, Alek Westover, Zoe Xi
October 2024

Abstract

Given f: [n] = R', and a permutation 7 : [k] — [k], we say that f contains an instance of 7 if there
are indices 1 < 41 < 42 < --- < ix < n such that f(i;) < f(i¢) whenever 7(j) < m(¢). We say that
f is w-avoiding if f contains no instances of 7, and that f is e-far from m-avoiding if any w-avoiding
g : [n] = R has Pry[f(z) # g(z)] > €.

Recently, Newman and Varma [NV24] gave a property tester for m-avoidance, for any constant length
permutation 7, with running time n®/1egloglosn) (45quming ¢ > Q(1)). Newman and Varma left as an
open question improving on this result, and suggested that considering the bounded range setting —
where we require the output of f to lie in some small set rather than all of R — could be a particularly
tractable easier problem to work on first. In this note we give an exposition of Newman and Varma’s
property tester, and then present novel property testers for permutation avoidance in the bounded range
setting.

1 Introduction

In property testing (introduced by [BLR90]) we have an object f — which will be a function f : [n] = R
for us — and would like to tell whether f satisfies a certain predicate P which we call a property. For
instance, we could consider the predicate P which checks whether f(i) < f(i+ 1) for all i € [n — 1]. We are
interested in algorithms that query f at a sublinear number of locations, and then output whether f has
property P. As stated, our goal is too ambitious: it could be the case that f is equal to a function with
property P in all but one location, in which case we would need to query a constant fraction of the domain
of f to be confident that f doesn’t have property P. To eliminate this issue, we consider an easier problem:
accept f that have property P, and reject with constant probability f which are e-far from all functions
with property P, where dist(f, g) = Pry[f(z) # g(x)].

When building a property tester, we are generally interested in minimizing the number of queries made by
the algorithm, rather than the running-time of an algorithm. We will consider adaptive testers by default,
but some of our results also hold for non-adaptive property testers which make all of their queries up front
instead of getting to choose their queries based on the outcomes of earlier queries.

Related Work
There is a long line of work studying property testing algorithms for permutation avoidance, for example:
[Ben19] [BC18] [New+19] [Rasl4]. The prior work can be summarized as follows, using Sy to denote the set
of permutations on [k], and taking e to be constant while n — oc:
e For every k < 3,7 € Sy, there is an adaptive m-avoidance tester using polylog(n) queries. [New+19]
e For constant k and the identity permutation 7 (i) =4 (or the reverse m(i) = k — i+ 1), there is an adaptive
m-avoidance tester using O(log(n)) queries. [BLW19].
e For k € O(1), 7 € Sk, there is an adaptive m-avoidance tester using n©(1/1°gloglogn) qyeries. [NV24]
e For k € O(1), 7 € Sy, there is a non-adaptive T-avoidance tester using O(n'~1/*) queries. [New+19]

IThroughout the paper we will use [x] to denote the set {1,2,..., [x]}.



Nathan S. Sheffield, Alek Westover, Zoe Xi

e For constant k there are some 7 € S, for which a non-adaptive m-avoidance tester requires Q(n'=1/¥)
queries. [BC18]
e An adaptive 12-avoidance tester requires 2(logn) queries. [Fis04]

Some people conjecture that for any constant k and m € Sy there is a polylog(n)-query m-avoidance
tester, but this remains an open question.

Paper Outline

In this note we will begin by summarizing Newman and Varma’s property tester, for educational pur-
poses. We will try to give a short intuitive explanation of their algorithm, but recommend the interested
reader to also take a look at Newman and Varma’s excellent exposition of their algorithm.

Afterwords, we will present some modest novel results on testing m-avoidance in the bounded range
setting. Specifically, in the bounded range setting we restrict to considering functions f : [n] — [R] for some
small R < n°) rather than considering all functions f : [n] — R. In the bounded range setting our main
results are:

Theorem 1.1. There is a 3412-avoidance tester for f : [n] — [R] with query complexity

O(EilRlogn (log3 R+ log® Rlog 671) loglog n)

Theorem 1.2. If 7 is a permutation of length k, there is a non-adaptive m-avoidance tester for f : [n] — [R]
which uses O(e ™! R¥) queries.

2 Preliminaries

Before continuing, we establish a few tools that will be useful throughout the paper. One extremely important
fact that will be used constantly is that if f is e-far from being m-avoiding, then f contains a large number
of disjoint copies of m. Specifically,

Fact 2.1. If f is e-far from m-avoiding, then f contains ne/|w| disjoint copies of .

Proof. Find a maximal set of disjoint copies of m. Let S be the set of indices involved in all of those copies.
We would like to show that |S| > en. To do so, it suffices to show that we can make f m-avoiding by
modifying only the indices in S. And indeed, we can do so! Let ¢ be some arbitrary index in .S, and j be the
index in [n] \ S closest to i. We will set f(i) = f(j), remove ¢ from S, and then repeat this process until S
is empty. Observe that each step of this process maintains that f is 7m-free over domain [n] \ S: this initially
holds by maximality of S, and at each step we only add an identical element adjacent to an existing element
and so cannot introduce a new m. So, by the end f will be 7-free. O

When discussing how a copy of a permutation 7 is laid out in f, it will often be useful to refer to the
values x € [n] corresponding to each element 7(1),7(2),... in the permutation. We’ll call these the legs of
a permutation.

One problem that we will face in our algorithms is that we will want to split the problem into sub-problems
that correspond to a certain “rectangle” in the input-output grid, but we can’t make a rectangle, we can
only restrict to vertical slices. However, for some problems, restricting to a vertical column is sufficient.
Specifically, previous work has investigated erasure resilient property testers for various problems (of
particular relevance to us is erasure resilient testing of permutation avoidance). We say that a tester is
erasure resilient (ER) if it can tolerate some fraction of the input being erased. More formally an erasure
resilient tester is defined as follows:

Definition 2.2. Let D C [n], f : D = R, and f’ : [n] > RU L, where f’ restricted to D equals f’, and
for x ¢ D, f'(x) = L. We say that an algorithm A is an ER tester if, given such an f’, A can make some



Nathan S. Sheffield, Alek Westover, Zoe Xi

queries, and distinguish between the cases that f has a property, and that f is e-far from having a property
(where here we define e-far to mean we must modify at least en values, as opposed to the other natural
definition of £|D|). The query complexity of A is the number of queries made to f’.

An ER tester is parameterized not just by the distance parameter ¢, but also by the sparsity pa-
rameter o = |D|/n of the actual function.

One specific powerful result established in previous work is:

Fact 2.3. Fix m € Sy, US3. There is an ER tester for a-sparse m-avoidance with query complexity
O((2a) ! polylog(n)).

3 Overview of Newman’s and Varma’s Tester

In this section, we describe Newman’s and Varma’s 20(V1087)_query tester for 7-freeness of functions f : [n] = R,
where m € Sy [NV24]. This tester captures most of the ideas behind Newman’s and Varma’s n°M-query
tester for arbitrary constant-length permutations and is much simpler to describe.

Before giving the proof, we introduce some terminology and give intuition for the proof. Given a function
f:[n] = R and an error parameter ¢, we view f as an n x [Im(f)| grid Go, whose horizontal axis is labeled
with values in [n] and vertical axis with values in Im(f) (in increasing order). The grid G contains the points
(i, f(4)) for i € [n]. Note that the tester does not have access to Go; the key first step of the tester will be to
build a coarse representation of Gy called the coarse grid. The coarse grid is defined by a partition of Im(f)
into horizontal layers I1,..., I, and a partition of [n] into vertical stripes Si,...,S,,. The intersection of
a stripe and a layer is called a box. See Figure 1 for a visual definition of these terms.

m X m Coarse Grid

0 ] } layer

(Lf(l)) —,
2,£2)) — > " |, e
12 ... stripe n

Figure 1: Coarse Grid

The testing algorithm will work by sampling points to form a coarse grid, and then handling each of the
following cases (roughly speaking):
1. There is an occurrence of 7 that is
grid contain an occurrence of 7.
2. We can find a box which contains many disjoint 7’s, and recursively apply our algorithm to the box.
3. It’s possible to find a 7 by finding part of a m within a box, and combining this with some structure
between boxes.
We’ll now give a more precise description of our algorithm, and an analysis of the algorithm.

4

‘visible in the coarse grid” — i.e., the non-empty cells of the coarse

Theorem 3.1. Fix ¢ > Q(1) and 7 = (3,2,1,4). There is a 20(V1%8™)_query m-avoidance tester.

Proof Sketch. Let m = 2V1°8™ Our tester begins by constructing an m x m coarse grid G as follows:
e Sample t = ©(mlogn) values x € [n].



Nathan S. Sheffield, Alek Westover, Zoe Xi

For i € [m — 1], let a; be the i - t/m-th largest sampled x value and let y; be the i -t/m-th largest y; value
among the f(x)’s for the sampled points.

As corner cases, define g = 1,y9 = —oo and x,, = n,y, = c0.

For i € [m], define the i-th layer I; as [z;_1, ;).

For i € [m], define the i-th stripe S; as [yi—1,¥:)-

We say that a box is vdense if it contains more than ©(n/m) points of G (we’ll specify the constant later).
We now will establish that if more than ne/32 points lie outside of vdense boxes, then we will find (with
good probability) a copy of ™ between the boxes of the coarse grid. To prove this we use a powerful theorem
of Marcos and Tardos:

Fact 3.2 (Marcos, Tardos [MT04]). There exists a constant C, such that if A is an n x n {0, 1}-valued
matrix with more than C; - n 1’s, then there are a set of 1’s in A that form a 7 pattern.

Coarse Grid

Figure 2: Finding 7 in the Coarse Grid

Lemma 3.3. Call a box in the coarse grid vdense if it contains more than (n/m)e/(100C;) points of G
(where C; is the constant from Fact 3.2). Let X be the set of points in G that lie in non-vdense boxes. If
|X| > ne/32, then with high probability when we sample points to construct the coarse grid we will find a
copy of m between the non-empty boxes in the coarse grid.

Proof. We claim that over the course of choosing t = ©(mlogn) random points (where we now can specify
the constant needed in the expression for ¢, setting ¢ = 10000C,e~*mlogn works), we will obtain points in
1+ Crm distinct boxes of the coarse grid, at which point Fact 3.2 allows us to find an occurrence of 7 in
the coarse grid, which implies that our function is not m-avoiding.

To see why we get this many points in distinct boxes, we consider taking the t points incrementally.
Suppose we have taken some points, and have hit x < C;m distinct non-vdense boxes so far. The number
of points in the union of these z non-vdense boxes is at most x(n/m)e/(100C;) < ne/100. Thus, there are
still at least ne/64 points in X whose boxes we haven’t hit, so sampling another random point yields a new
box with probability at least /64.

Now standard probability bounds show that our choice of ¢ is large enough that we will hit C'ym+1 disjoint
boxes with very good probability. By the Marcus Tardos theorem Fact 3.2, this gives us an occurrence of m
in the coarse grid, and hence a 7 in the function. O



Nathan S. Sheffield, Alek Westover, Zoe Xi

By Lemma 3.3 we may assume for the rest of the proof that there are at most ne/8 points of G in
non-vdense boxes (as defined in Lemma 3.3). By Fact 2.1 this implies that there are ne/8 disjoint 7’s with
all legs lying in vdense boxes; call such 7’s good.

Call a box dense it it contains at least 1/4 the number of points required to be vdense.

Lemma 3.4. Using our ¢t sampled points, we can identify a set of boxes B which includes all vdense boxes,
and doesn’t include any non-dense boxes.

Proof. A standard Chernoff bound implies that we can get an additive ©(n/m) estimate of the number of
points in each box (note that n/m is the maximum possible number of points in a box). We set B to be the
set of boxes for which our estimate of the number of points in the box is at least 1/2 the number of points
required to be vdense. Our Chernoff bound plus a union bound implies that this strategy places all vdense
boxes in B, and doesn’t place any non-dense boxes in B. O

At this point we (logically) erase all points outside of B, and focus on testing the erased function for
m-avoidance; call the erased function f’. Note that if f is m-avoiding, the erased function f’ is also m-avoiding,
and by Lemma 3.4 combined with Lemma 3.3 if f is e-far from m-avoiding then f’ contains ne/8 disjoint
copies of 7. In future discussions we will treat erased points as completely not existing. So, e.g., all non-
empty boxes are now dense. This also means that we know all the dense boxes, because these are exactly
B.

Now, we show that the dense boxes are nicely spread out.

Lemma 3.5. There are at most O(1) dense box in each stripe and each layer.

Proof. A straightforward Chernoff bound plus union bound implies that every stripe and every layer contains
O(n/m) points. But there are {(n/m) points in a single dense box, so there are at most O(1) dense boxes
per layer/stripe. O

Now, the obstacle to finding 7’s using the coarse grid is that a 7 might have multiple legs in the same
stripe or layer, making the coarse grid insufficiently granular to find an instance of 7. We want to look for
7’s by finding part of the structure of the 7 in the coarse grid and part of it within layers / stripes. See
Figure 3 for a visualization of this. To facilitate this, we define a graph on the dense boxes. We say that

Coarse Grid

Figure 3: A copy of m with the first two legs in a single box, and the last two legs in different boxes.



Nathan S. Sheffield, Alek Westover, Zoe Xi

two dense boxes are directly connected if they lie in the same layer or stripe, and connected, if there is
a path of direct connections that joins the boxes. For a dense box B, define Ny(B) to be the set of dense
boxes which are within distance £ of B (note that B is distance 0 from B so B € Ny(B) for any £ > 0). Now,
define M; to be the set of 7’s whose legs are split across exactly ¢ connected components of this graph. Note
that for some i € [4], there will be Q(n) disjoint copies of 7 in M;; our algorithm will exploit this fact by
performing queries that would uncover a 7 in each of the 4 cases. We are now ready to finish the description
of our tester:

e Choose a random dense box B and run our algorithm recursively on N3(B). If the recursive application
of our algorithm finds an occurrence of 7, report this.

e For each dense box B, test N3(B) for all patterns of length at most 3. If there is some way to piece
together patterns that you find to form a m, report this.

e If no 7’s were found, report that there are probably no n’s in the array.

Description of details that we’re glossing over in this proof sketch There are a number of subtle
details that we’re missing in this high level description, and that we will not handle in our proof sketch.
We’ll now give a description of the places where we’re being imprecise, and give some intuition for how to
fix the algorithm.

We've defined our algorithm recursively, but the smaller instances of the problem aren’t quite the same
as the big instance. In particular, we’ll assume that the smaller instances receive the original n as an input
in addition to their domain size n’. The “recursive calls” of the algorithm will actually use m = gviogn
still, as opposed to 2VI°8™ We’ll terminate the recursion once n’ < 2vV87 and handle this base case by
querying all n’ points in the domain of the recursive call. Note that this strategy ensures that the number
of levels of recursion in the algorithm is O(y/logn).

Another detail that we're not handling is that we’d like to perform a union bound over the levels of
recursion to say that all of our assertions “this holds with good probability” simultaneously hold across all
levels of recursion with good probability. This is not a big deal because there are only O(y/logn) levels
of recursion. However, this necessitates repeating any steps that only succeed with constant probability a
sufficient number of times so that we can perform this union bound; we won’t spell this out because this is
a proof sketch.

Another detail that we’re glossing over in the above description of the algorithm is that we can’t actually
restrict to a box and do queries on that box. Fortunately, because the boxes in question are all dense, and
because each stripe has at most O(1) dense boxes, we can treat points that lie in the stripe’s x-range but
outside of the box in question as “erasures” and use erasure resilient testers as described in Fact 2.3. Because
the recursive call to our algorithm will also need to handle erasures, we’d need to handle those as well in our
algorithm.

There’s an additional subtlety in the part of the algorithm where we “test all dense boxes for avoiding
smaller permutations”. Namely, in addition to testing for occurrences of a pattern we also need to test for
occurrences of these smaller patterns with certain restrictions. Specifically, the extra restriction is that we
might require legs of the permutation to lie in certain parts of the grid. This is important to ensure that we
can combine the partial pattern with things from other dense cells to form an occurrence of w. We’ll discuss
this detail a bit more when arguing for the correctness of the algorithm, but refer the reader to [NV24] for
the full details. An illustration of this last issue is provided in Figure 4.

Query Complexity
Claim 3.6. The query complexity is 20(vIo8n),

Proof. Let T(n,e,«) be the running time of our tester with domain size n, error parameter ¢, and erasure
parameter ov. We have the following recurrence:

T(n,e,a) = O(m) + O(T(n/m,Qe), 2(a))).



Nathan S. Sheffield, Alek Westover, Zoe Xi

12 pattern successfully combines

12 pattern fails to combines with coarse grid to make 3214

with coarse grid to make 3214

/!
/] ”

Figure 4: Hlustration of sub-pattern successfully and unsuccessfully combining with the coarse grid to form
a 3214-occurrence.

Setting m = 2V1°8™ makes the recursion tree depth O(y/logn). Thus, our query complexity is at most
2\/logn . O(l)\/logn < 20(\/logn).

O

Correctness To conclude we must show that if there are ne/8 disjoint 7’s, then this procedure will find one
with good probability. We break into cases based on which of the M;’s is large (this is for analysis purposes,
the tester doesn’t need to know which case it’s in).

Case 1: |My| > Q(n) . Then the pattern appears in the coarse grid, and we will already have found it.

Case 2: |M;p| > Q(n) . Then there must be Q(m) dense boxes with (n/m) disjoint 7’s in each of them. If
not, then the number of M;i-type 7’s would be at most O(m)o(n/m) + o(m)O(n/m) = o(n), because there
are only O(m) dense boxes and each has at most O(n/m) ©’s. Thus, sampling a random box B and recursing
on N3(B) will find a 7 with good probability.

Case 3: |Ms| > Q(n) . A type M3 7 has 2 legs in N3(B) for some B, and then has the other 2 legs in
different connected components. Say that = double hits a neighborhood N3(B) if m has two legs in this
neighborhood. We claim that Q(m) many dense boxes are double hit by Q(n/m) many 7’s. Indeed, if this
were not the case, then the number of disjoint M3 7’s would be at most o(m)O(n/m)+O(m)o(n/m) = o(n).
Thus, there is some box B (in fact many, but we only need one) such that B is far from avoiding the 2 leg
pattern that would contribute to 7, and a 7 in B can combine with elements from two other coarse boxes
to form an instance of a w. Thus, our procedure of testing all the dense boxes for each pattern of length 2
will find that box B has this pattern, and realize that this can be combined with boxes in the coarse grid to
make the entire pattern.

Actually, we are glossing over an important detail here: when testing N3(B) for smaller patterns, we
actually aren’t quite just checking for patterns, we are checking for patterns where the legs are restricted
to lie in specific places. This is important to make sure that we can actually combine the pattern with the
dense boxes.

Case 4: |Ms| > Q(n) . There are actually two quite distinct types of My 7’s.

Case 4.1: there are Q(n) many 7’s with 3 legs in one connected component and 1 leg in a
different connected component . We handle this case using exactly the same technique as in Case 3.



Nathan S. Sheffield, Alek Westover, Zoe Xi

Namely, we assert that there must be some box B such that N3(B) contains Q(n/m) many copies of the
length 3 sub-permutation that we need, and so our tester will find some such copy and we will be able to
combine it with a box from the coarse grid to complete the pattern.

Case 4.2: There are 2(n) many 7’s with 2 legs in one connected component, and the other two
legs in their own different connected component . This is the most challenging case. We split into
cases based on which of the legs are grouped together in the same component. For simplicity, let’s assume
that the first two legs are grouped together, and so are the second. Then we can write m = ¢ where ¢,
are the first and second two legs of the permutation respectively. Call a box B ¢-good if Q(n/m) n’s have

their first two legs (i.e., the ¢ part of ) in B. Similarly, say a box is ¥-good if the last two legs are in B.
We'll now show that there are (n) many disjoint 7’s that start in a ¢-good box. Indeed, if this were
not the case, then the total number of 7’s would be at most o(n) 4+ o(n/m)O(m) = o(n), because there are
at most O(m) dense boxes and each non-¢-good box contributes at most o(n/m) copies of w. Hence, there
are actually Q(n) many 7’s that start in a ¢-good box; call these awesome 7’s. By averaging there is a
box B such that (n/m) of these awesome 7’s end in B. This makes B a 1-good box, and by construction
there’s a ¢-good box which can be paired with B’ to get a w. Thus, our procedure of testing all the boxes
for small patterns will result in finding two size two patterns that can be combined to our size 4 w pattern.
O

4 Testers in the Bounded Range Setting

We now give our simple novel testers for the bounded range setting. We'll start with a very specific example,
and then discuss what can be done in general.

Theorem 1.1. There is a 3412-avoidance tester for f : [n] — [R] with query complexity
O(E_lRlogn (log3 R+ log”® Rlog 6_1) log log n) .

Proof. Our algorithm will only reject if it finds an occurrence of 3412 in f — so, it will always accept when
f is indeed 3412-avoiding. For the remainder of the proof we’ll assume that f is e-far from 3412-avoiding,
and show that the algorithm is likely to find a copy of 3412. The basic idea will be to guess a division into 4
“quadrants”, as depicted Figure 5, and then search for an increasing pair in both the top left and the bottom
right quadrant.

Figure 5: A division of the grid into 4 quadrants, with increasing pairs in both the top left and bottom right
quadrant together forming a copy of the pattern 3412.

That is, we’ll choose thresholds z* € [n], y* € [R], and search for pairs 21 < x9 with f(x;) < f(z2) and
either xo < z*, f(x1) > y* (i.e. both points are in the top left quadrant) or x1 > z*, f(xz2) < y* (i.e. both
points are in the bottom right quadrant).

In order to search for increasing pairs in a particular quadrant, we’ll make use of Dixit, Raskhodnikova,
Thakurta and Varma’s O(e~!logn)-query erasure resilient monotonicity tester [Dix+18], which we’ll refer
to as MonoTester. The reason we need an erasure-resilience property is that, to test the upper left quadrant,
we’ll want to run a tester on the first * elements of the domain, but to consider the output of f as “erased”



Nathan S. Sheffield, Alek Westover, Zoe Xi

whenever f(z) < y*. (Similarly for the bottom right quadrant.)

Our overall algorithm will be as follows:

Algorithm 1 3412-avoidance tester
1: fori e {1,...,[log R|} do

2 for 2 iterations do

3 y* + random element of [R] > choose a y threshold randomly
4 r* 5] > do a binary search for the x threshold
5: binSearchJump <« [} ]

6: while binSearchJump > [Slzﬁ#m] do

7 run MonoTester on the upper left quadrant log log n times with distance parameter 2 m
8 if an increasing pair is found then

9: ¥ < x* — binSearchJump

10: else

11: ¥ < ¥ 4 binSearchJump

12: binSearchJump <« w

13: ¥ x* + [m‘l ‘

14: run MonoTester with parameter 2° - m on the bottom right quadrant

15: output “not 3412-free” if the algorithm has queried 4 points forming a 3412; output “3412-free” otherwise

To show that this algorithm works, we first state the following simple lemma;:

Lemma 4.1. For some i € [[log R]], there are at least R -27¢ many heights y with at least 2° - TR T
disjoint 3412’s whose first leg is at height y.

Proof. For each i € [[log R]], let x; be the number of heights y such that the number of 3412’s starting at
height h lies in [21—*1 IR T 20 . TRlas R]) (except, if i = log R, then include the right endpoint). Then,

because there are ne/4 disjoint copies of 3412 in f by Fact 2.1, we have:

ne A ne
=< 2. " g
4 - = 4R[log R] *
Thus, there exists i € [[log R]] such that x; > R-27° O

Since for each i € [[log R]] we run 2¢ iterations of our procedure, Lemma 4.1 ensures that, for some 4, with
constant probability one of our iterations with that ¢ will choose y* such that at least 2° - m disjoint
3412’s have first leg at height y*. Let us now restrict our attention to such an iteration. Our next lemma
will help us show that our binary search procedure over x* lets us find a 3412 with constant probability.

Lemma 4.2. For such a y*, there exists an 2’ such that there are at least 2° - m disjoint increasing
pairs in each of the top left and bottom right quadrants.

Proof. We know that at least 2¢ - m disjoint 3412’s have first leg at height y*. Let 2’ be median
z-coordinates of all the second legs of those 3412; we will use this 2’ to define our quadrants. Observe that
all those 3412s whose second leg lies before x’ contribute an increasing pair to the upper left quadrant, and
that all those 3412s whose third leg lies after 2’ contribute an increasing pair to the bottom right quadrant.
So, our choice guarantees at least % -2 m increasing pairs in each of these quadrants. O

We now claim that, with at least constant probability, the final value of z* that our binary search ends
up on is at most =’ + fm] Suppose this were not the case: then, at some x > 2/, the binary search
must have chosen to step to the right, meaning that all loglogn runs of MonoTester must have failed to
find an increasing pair in the upper left quadrant. But note that at such an x, since there are at least



Nathan S. Sheffield, Alek Westover, Zoe Xi

20 W disjoint increasing pairs in the upper left quadrant, the distance from monotone in the upper

left quadrant actually is at least 2° - so each run of MonoTester will find an increasing pair with

SR[log R
constant probability. The chance of all of these runs failing is at most srziszm = m So, since our binary
search takes logn steps, with at least constant probability such a failure never happens.

Observe that, letting «* be the final value of the = threshold, in the process of the binary search we must
have found an increasing pair in the upper right quadrant for z*. This is because the last time the binary
search steps left, it must have been because an increasing pair was found in the upper left quadrant at that
stage, and z* will end up greater than or equal to the value of the x threshold at the last step left. So it
suffices to show that we have at least constant probability of finding an increasing pair in the bottom right
quadrant when we run MonoTester on it. But this follows because z* < 2’ + [SRﬁT"gRﬂ, so by Lemma 4.2

En _ en i, En
8Rceillog R { 100R[log R] 1 22 9R[log R]

quadrant, so the distance to monotone is at least 2° -

there are at least 2° -

disjoint increasing pairs in the bottom right
9R[lig R

Thus, if f is e-far from 3412-free, this algorithm will find a 3412 with constant probability. Repeating
the algorithm a constant number of times will increase this probability to at least 99%. To calculate query
complexity, recall that MonoTester requires O(6~!logn) queries when run with distance parameter §. For a
given value of i, we perform 2° iterations of our binary search. Each iteration of binary search requires order

log (g) -loglogn < O (log ("' R) loglog n)
{SR]'log R'\]

runs of MonoTester at distance parameter 2¢ so in total every given value of i requires

£
" 8R[log R|’

logn

2°- O (log (¢7"R) loglogn) - O < > < O( R (log> R +log Rloge™ )1ognloglogn>

2t 8R[log R]

queries. Since we run this for [log R| values of 4, the total query complexity is therefore

O(E_lR (log3 R + log? Rlog 5_1) log nloglog n)

4.1 More General Bounded Range Algorithms

In the previous algorithm, we exploited some particular structure of 3412. Here, we’ll give a very simple
algorithm showing that one can still get a runtime polynomial in R for any permutation 7 of a constant
length k.

Theorem 4.3. If 7 is a permutation of length &, there is a non-adaptive O(¢ ' RF)-query tester for range-R
m-avoidance.

Proof. The algorithm will simply sample 100e~'k3R* random inputs, and claim the permutation is 7-free
if f does not have a 7 using only those inputs. To show that this algorithm succeeds, note that if f is
e-far from m-free, by Fact 2.1 f contains 47 dlbjOlIlt copies of . So, by the pigeonhole principle, there is
some tuple (y1,...,yx) € [R]* such that f contains wpe disjoint copies of m whose ith leg has height y; for all 7.

Let S; consist of the smallest (% - k}fk) many indices of first legs among those copies of . Similarly, for
i €1{2,...,k}, we'll let S; consist of the (% - 25 )th through (7 - 72 )th smallest indices of ith legs among
those copies of m. Observe that any index in S; is smaller than any index in S;11, and that every =z € S;
has f(z) = y;. So, if our random samples find at least one element from each of these S;, then we will have
found a copy of m. Since each S; has size 1757, a given sample will hit it with probability %z. Since we're

making 100e~'k3 R¥ random samples, with high probability we will find an element from each of them. [J

10



Nathan S. Sheffield, Alek Westover, Zoe Xi

5 Conclusion

In this note we have given an exposition of Newman and Varma’s sublinear permutation avoidance tester.
We have also studied permutation avoidance in the bounded range setting, and obtained extremely simple
testers with polynomial dependence on the range. We leave improving our results in the bounded range
setting, or showing a lower bound, as open problem.

References

[BC18]

[Ben19]

[BLR90]

[BLW19]

[Dix+18]

[Fis04]
[MT04]
[New+19]
[NV24]

[Ras14]

Omri Ben-Eliezer and Clément L. Canonne. “Improved bounds for testing forbidden order pat-
terns”. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algo-
rithms. STAM. 2018, pp. 2093—-2112.

Omri Ben-Eliezer. “Testing Local Properties of Arrays”. In: 10th Innovations in Theoretical
Computer Science (2019).

Manuel Blum, Michael Luby, and Ronitt Rubinfeld. “Self-testing/correcting with applications to
numerical problems”. In: Proceedings of the twenty-second annual ACM symposium on Theory
of computing. 1990, pp. 73-83.

Omri Ben-Eliezer, Shoham Letzter, and Erik Waingarten. “Optimal adaptive detection of mono-
tone patterns”. In: arXiv preprint arXiv:1911.01169 (2019).

Kashyap Dixit et al. “Erasure-Resilient Property Testing”. In: SIAM Journal on Computing
47.2 (2018), pp. 295-329. DOI: 10.1137/16M1075661. eprint: https://doi.org/10.1137/
16M1075661. URL: https://doi.org/10.1137/16M1075661.

Eldar Fischer. “On the strength of comparisons in property testing”. In: Information and Com-
putation 189.1 (2004), pp. 107-116.

Adam Marcus and Gabor Tardos. “Excluded permutation matrices and the Stanley—Wilf con-
jecture”. In: Journal of Combinatorial Theory, Series A 107.1 (2004), pp. 153-160.

Tlan Newman et al. “Testing for forbidden order patterns in an array”. In: Random Structures
& Algorithms 55.2 (2019), pp. 402-426.

Ilan Newman and Nithin Varma. “Strongly sublinear algorithms for testing pattern freeness”.
In: TheoretiCS 3 (2024).

Sofya Raskhodnikova. “Testing if an array is sorted”. In: Encyclopedia of Algorithms. Ed. by
Ming-Yang Kao. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 1-5.

11


https://doi.org/10.1137/16M1075661
https://doi.org/10.1137/16M1075661
https://doi.org/10.1137/16M1075661
https://doi.org/10.1137/16M1075661

	Introduction
	Preliminaries
	Overview of Newman's and Varma's Tester
	Testers in the Bounded Range Setting
	More General Bounded Range Algorithms

	Conclusion

